

# Preparation of BaSO<sub>4</sub>/polymer nanoparticles by controlled surface crystallization



Vatita Leamkaew, Daniel Crespy\*

Vidyasirimedhi Institute of Science and Technology, Rayong 21210, Thailand \*E-mail for correspondence: daniel.crespy@vistec.ac.th

## 1 Challenge

Barium sulfate suspensions are common contrast agents for X-ray imaging. Despite their importance, they suffer from low colloidal stability. Herein, we show that BaSO<sub>4</sub>/polymer hybrid nanoparticles can be obtained by surface-induced crystallization of BaSO<sub>4</sub> crystals on polymer functionalized with thiosulfate groups. The X-ray attenuation coefficient of barium sulfate/polymer hybrid nanoparticles was 121 HU which was significantly larger than the attenuation coefficient of soft tissues.



Synthesis of thiosulfate-functionalized

## Synthesis of polymerizable Bunte salt (VBT)



vinyl benzyl chloride (VBC)

nanoparticles

vinyl benzyl thiosulfate (VBT)

### Miniemulsion copolymerization



### Thiosulfate-functionalized particles

| Entry    | Monomer unit<br>[mo | $D_{h}$ |      | Solid<br>content | ζ-potential |      |
|----------|---------------------|---------|------|------------------|-------------|------|
|          | MMA                 | VBT     | [nm] | PDI              | (wt%)       | (mV) |
| VL134-10 | 100                 | 0       | 138  | 0.150            | 0.7         | -30  |
| VL134-0  | 90                  | 10      | 169  | 0.129            | 1.0         | -44  |
| VL131-1  | 96                  | 4       | 162  | 0.109            | 2.4         | -58  |
| VL134-6  | 87                  | 13      | 234  | 0.288            | 3.1         | -72  |

### Control of thiosulfate functionalization

Increasing of VBT concentration

Diameter and zeta potential

## Synthesis of BaSO<sub>4</sub>/polymer nanoparticles

### Hydrolysis of thiosulfate moieties



### BaSO₄/polymer nanoparticles

| Entry       | Feed ratio<br>[mol] |                   | D <sub>h</sub> |       | ζ-potential | Ba in<br>dispersion | Ba in<br>polymer      |
|-------------|---------------------|-------------------|----------------|-------|-------------|---------------------|-----------------------|
|             | VBT                 | BaCl <sub>2</sub> | [nm]           | PDI   | (mV)        | (mg Ba/L)           | (mg Ba/mg<br>polymer) |
| VL134-0.2Ba | 1.0                 | 0.2               | 105            | 0.397 | -36         | 1.7                 | 0.106                 |
| VL134-0.5Ba | 1.0                 | 0.5               | 125            | 0.307 | -35         | 2.6                 | 0.046                 |
| VL134-1.0Ba | 1.0                 | 1.0               | 151            | 0.395 | -33         | 4.6                 | 0.198                 |

Increasing barium concentration



#### SEM



Micrograph of barium sulfate/polymer nanoparticles after filtration prepared with a molar ratio between VBT units and BaCl<sub>2</sub> of 2

Presence of BaSO<sub>4</sub> on nanoparticle surface

### X-ray diffraction



XRD patterns of barium sulfate, barium sulfate/polymer nanoparticles prepared with VBT units to BaCl<sub>2</sub> ratios

### 5 Conclusions

- Successful synthesis of thiosulfate-functionalized nanoparticles by miniemulsion copolymerization
- Crystallization of BaSO₄ on nanoparticle surface
- The X-ray attenuation coefficient of barium sulfate/polymer hybrid nanoparticles was 121 HU