

Azobenzene: Influence on Swelling Behavior of Poly(Dimethylacrylamide) Films in Water Vapor under UV-Irradiation

David P. Kosbahn¹, Morgan P. Le Dû¹, Julija Reitenbach¹, Lukas V. Spanier¹, René Steinbrecher², André Laschewsky^{2,3}, Robert Cubitt⁴, Christine M. Papadakis¹, and Peter Müller-Buschbaum¹

¹Technical University of Munich, TUM School of Natural Science, Department of Physics, Chair for Functional Materials, James Franck-Str. 1, 85748 Garching, Germany

²Institut für Chemie, Universität Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam-Golm, Germany

³Fraunhofer Institut für Angewandte Polymerforschung, Geiselbergstr. 69, 14476 Potsdam-Golm, Germany

⁴Institut Laue-Langevin, 71 avenue des Martyrs, 38000 Grenoble, France

Responsive Polymers

Response of polymer to external stimulus: Light, temperature

Stimulus can cause reversible micro- and macroscopic changes in polymer

- change in optical absorption
- > change in polymer chain conformation

Surface
Mechanical
Surface change
Electrical
Phase seperation
Permeability
Optical

G. Koçak, C. Tuncer, V. Bütün, HJBC 2020, 48, 527–574.

Azobenzene-Modified pDMAm

· Porsdam

p(DMAm-co-AzAm11.4%)

- statistical copolymer of dimethyl-acrylamide (DMAm) and azobenzene-acrylamide (AzAm)
- cloud point shift upon UV-irradiation in solution

behavior in thin films unknown:

- swelling of polymer films in water vapor?
- behavior upon irradiation with UV light?
- kinetic Fourier-transform infrared spectroscopy (FTIR) during irradiation
- kinetic time-of-flight neutron reflectometry (ToF-NR) during irradiation

ToF-NR

ToF-NR measurements at the D17 instrument of Institute Laue-Langevin

• drying with N₂, swelling in D₂O vapor and irradiation with UV-lamp at 30 °C

investigate changes in film thickness and SLD as result of UV light

Static measurements

- ➤ Increase of film thickness and SLD due to incorporation of D₂O
- > Small change after irradiation with UV-lamp for 1 h

Time-resolved measurements

- Investigate kinetics of water uptake in polymer and response to UV-light
- Evolution of thickness and D₂O volume fraction over time

- loss of D₂O during irradiation from heat
- return to previous thickness and D₂O content after heat from lamp is removed
- > heat from lamp dominates water expulsion due to isomerization
- > only small changes after lamp is switched off

Photoresponsive Polymers

- control of LCST with light
- use of photoactive moieties, e.g. azobenzene photoisomerization
- non-invasive stimulus with high temporal resolution
- application for light-sensors and drug-delivery devices

Kinetic FTIR

Time-resolved FTIR measurements

- polymer films on silicon substrate
- swelling in H₂O vapor and irradiation with UV-lamp
- > examine changes in group vibrations as result of swelling and irradiation

O-H stretching of water molecules

- Fitting of the FTIR spectra shows that global water content in polymer increases after irradiation
- however, loss of water in vicinity of polymer backbone

Amide I C=O stretching v(C=O) 1640 tertiary amide 1634 1634 1632 0 25 50 75 100 125 Time [h]

- > decrease in wavenumber during swelling, due to hydrogen bond formation
- > further decrease after irradiation, however much stronger for secondary amide
- increase in global water content accounted for by side chains
 increased water uptake mostly limited to photoactive side chain
 - ater uptake mostry illinted to photoactive side chair

Conclusions

FTIR

- increase in hydration due to isomerization of azobenzene
- mainly located around photoactive sites

ToF-NR

- small increase in D₂O content after irradiation
- light responsive effect weaker compared to FTIR
- likely due to lower film thickness (more interface effects)

