A New Class of Polyphosphorodiamidates for Sustainable Applications ## Nantawat Kaekratoke and Daniel Crespy* Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, Thailand *E-mail for correspondence: daniel.crespy@vistec.ac.th ## 1 Challenge Herein, we present the synthesis a phosphorus-containing content diacrylate monomer. The monomer was subsequently reacted with various amine and thiol compounds via thiol-ene and aza-Michael polyaddition to obtain a new class of polyphosphorodiamidates. ## 3 Thermal and Flammability Test Molecular weight ($M_{\rm w}$) and $T_{\rm g}$ prepared by Michael addition (PN1–PN7), aza-Michael addition (PN8–PN9), and radical thiol-ene polyaddition (PN1*–PN7*). | Michael | <i>D</i>
(m²·s ⁻¹) | <i>M</i> _w
(g·mol⁻¹) | Radical | <i>D</i>
(m²⋅s ⁻¹) | <i>M</i> _w
(g·mol⁻¹) | τ _g
(°C) | |---------|-----------------------------------|------------------------------------|---------|-----------------------------------|------------------------------------|------------------------| | PN1 | 3.32×10^{-11} | 35,750 | PN1* | 1.03×10^{-10} | 8,750 | - 9 | | PN2 | 5.70×10^{-11} | 8,750 | PN2* | 1.25×10^{-10} | 5,250 | –17 | | PN3 | 6.62×10^{-11} | 5,950 | PN3* | 9.20×10^{-11} | 11,600 | 104 | | PN4 | 6.64×10^{-11} | 5,900 | PN4* | 1.11×10^{-10} | 7,100 | 103 | | PN5 | 9.57×10^{-11} | 2,300 | PN5* | cross-linked | | 57 | | PN6 | 7.06×10^{-11} | 5,000 | PN6* | 3.11×10^{-10} | 500 | 65 | | | | | PN6a* | 1.39×10^{-10} | 3,950 | -8 | | | | | PN6b* | 2.19×10^{-10} | 1,200 | – 5 | | PN7 | 7.57×10^{-11} | 4,200 | PN7* | 3.37×10^{-10} | 400 | 95 | | | | | PN7a* | 8.51×10^{-11} | 14,300 | 13 | | | | | PN7b* | 9.77×10^{-11} | 9,950 | 8 | | PN8 | 1.26×10^{-10} | 5,100 | | | | 34 | | PN9 | 8.73×10^{-11} | 13,400 | | | | 79 | **TGA** -EP/PN2 **DSC** -EP/PNŤ — EP 120 °C 80 -Wieght (%) 137 °C 131 °C EP/PN1 200 **500** 600 120 40 160 **Temperature (°C)** Temperature (°C) 20S 100S **Burned down quickly** EP/PN1* Self-extinguished within 60 s EP/PN2* Self-extinguished within 79 s Higher P content Increase T_q Better flame-retardant