Dual-Responsive Triblock Terpolymer: Unravelling pH and Temperature Effects on Self-Assembly in Aqueous Solution

Imperial College ¹ Technical University of Munich, TUM School of Natural

- Sciences, Garching, Germany ² European Molecular Biology Laboratory (EMBL), Hamburg, Germany
- ³ Imperial College, Department of Materials, London, UK

Methods

⁴ University of Central Florida, Orlando, Florida, USA

Introduction

Amphiphilic block copolymers self-assemble into micelles of different shapes in aqueous solutions and form hydrogels if the polymer concentration is sufficiently high.^[1] Less is known about the micelle and gel formation of triblock terpolymers with pH- and thermoresponsive blocks. The use of functional segments in block copolymers increases the tunability of the nanostructures even further. Here, the effect of temperature and pH values on self-assembly of the dual responsive terpolymer featuring three different blocks is addressed.

Aim of the work

To investigate the temperature- and pH-dependent micellar structures, charges status

System under investigation

PMMA₂₂-b-PDMAEMA₃₁-b-PNMEP₁₈

PMMA: hydrophobic PDMAEMA: $pK_a = 7.5$ LCST at high pH

pH 4 pH 6 pH 8

PNMEP

at 25 °C

SAXS

PNMEP: $pK_a = 5.4$, LCST at low pH

Raman spectroscopy

- local intermolecular environment
- BAC solution in D₂O at 1 wt%
- temperature range: 13 48 °C
- pH = 4, 6 and 8
- → Gaussian deconvolution of Raman peaks in C-H stretching region

Small-angle x-ray scattering (SAXS)

BioSAXS P12 at EMBL

- > the inner structure of micelles
- BAC solution in H₂O at 1 wt%
- $\lambda = 0.124$ nm, SDD = 3 m
- temperature range: 13 48 °C
- pH = 4, 6 and 8
- → SAXS curve fitting with structural modes

SAXS fitting model

 $I(q) = P_{mic}(q)S(q) + P_{cl}(q) + I_{oz}(q) + I_{bkg}$

form factor for core-shell spherical or homogeneous cylindrical micelles $P_{mic}(q)$ hard-sphere or sticky hard-sphere structure factor S(q)

form factor of large clusters, Porod term $P_{cl}(q)$

Ornstein-Zernike term for concentration fluctuations, I_{bkq} : background

Results

p*K*_a 8

pH-dependent

Raman spectroscopy at 25 °C ntensity [arb.units] - pH 8 25 °C O-D stretching $-N(CH_3)_2$ 2200 2600 2800 2400

Frequency [cm⁻¹]

with decreasing pH value

O-D stretching becomes weaker deprotonated

 $I_{OZ}(q)$

- → addition of H₂O to acid solution
- $\nu(N-(CH_3)_2)$ peaks disappear

 $pH > pK_a$

→ PDMAEMA block protonated to quaternary ammonium cations in the acidic environment

- elongation of polymer chains with increasingly protonated blocks
- charges enhance the concentration fluctuations in the micellar shell
- charges hinder self-assembly

pH- and *T*-dependent

 pK_a

CP

$pH < pK_a$ and $pK_a < pH < pK_a$

- weak *T*-dependence of structure
- elevated CP at pH 6 compared to pH 8

charges hinder coil-to-globule transition

$pH > pK_a$

- clusters formed at 43 °C and above
- Porod exponent increases
 - → cylinders fold to form sheets
- → hydrophobic interactions dominate during phase separation
- temperature-dependency becomes weaker at lower pH

25 30 35 40 45 50 Temperature [°C]

References and Acknowledgement

[1] C. M. Papadakis, C. Tsitsilianis, Gels, 2017, 3, 3.

EMBL is acknowledged for providing excellent equipment. We also thank the Global & Alumni Office of TUM for providing financial support for the collaboration with ICL.

Conclusion

- Reduction of hydrogen bonding and formation of hydrophobic domains with increasing temperature
- Increased charge density due to lower pH hinder interaction between micelles due to repulsion of polymer chains, thus hinder the T-dependent self-assembly of polymer chains.