











# ECO-DESIGN OF RECYCLING AND REUSE CHANNELS FOR BIOBASED AND BIODEGRADABLE PLASTICS:

## A STRUCTURE-PROPERTIES RELATIONSHIP APPROACH

Nathan Jourdainne\*1, Rebeca Heller Dos Santos2, Stéphane Peyron3, Sébastien Gaucel2, Nicolas Sbirrazzuoli<sup>1</sup>, Chahinez Aouf<sup>2</sup>, Nathanaël Guigo<sup>1</sup>

- <sup>1</sup> Nice Institute of Chemistry (CNRS UMR7272), University Côte d'Azur, Valrose avenue, 28, 06100 Nice, France
- <sup>2</sup> UMR IATE, INRAE, building 31, 2 place Pierre Viala, 34000 Montpellier, France
- <sup>3</sup> UMR IATE, University of Montpellier, Montpellier, France
- \*nathan.jourdainne@univ-cotedazur.fr

## **Context - ECO2R project**

- Supports a circular economy by advancing recycling routes beyond composting
  - Focuses on biobased, biodegradable **plastics** for food packaging applications
  - Addresses structural, chemical, and environmental barriers to reuse
- Investigates degradation, decontamination, and **stabilization** mechanisms
- Aims to design safe, recyclable materials for closed-loop end-of-life strategies [1] [2]

#### **Objectives**

- Identify structural markers influencing the recyclability of biodegradable plastics
- Develop stabilization strategies based on degradation products
- · Assess the impact of recycling on biodegradability
  - Design safe, recyclable, and compostable materials [3]
- Target applications in sustainable food packaging [4]

### Methodology

- Developing a structure—properties relationship approach
- Tracking effects of aging, contamination, and recycling on polymer structure and performance
- Using techniques like TGA, DSC, DMA, tensile, FSC, XRD, FTIR, SEC, and PLOM · Assessing crystallinity, molecular weight, and morphology
  - Linking microstructural changes to recyclability and decontamination

### **Enhanced recycling strategy for biodegradable** plastics: research strategy (black + green) compared to the current situation (black).



## Who Degrades First? Biopolyesters Face the Heat

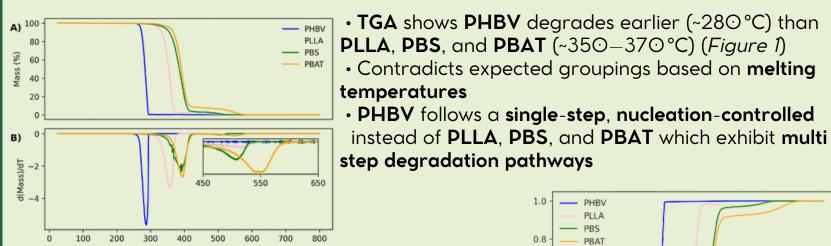



Figure 1. TGA (A) & dTG (B) curves.

- Conversion analysis confirms PHBV shows rapid, sharp mass loss (Figure 2)
- PBS and PBAT degrade more gradually
- Indicates overlapping, multi-step degradation mechanisms for PBS and PBAT

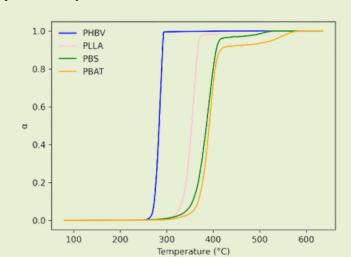



Figure 2. Conversion (a) vs. Temperature.

- - Activation energy (Ea) remains constant for PHBV (~140-150 kJ/mol) (Figure 3)
  - Confirms PHBV follows a simple, single-step degradation mechanism • Ea increases significantly for PBS and PBAT at high
  - conversions
  - Reaches over 400-500 kJ/mol, indicating energyintensive secondary reactions

Figure 3. Activation Energy (Ea) vs. a.

## **Conclusion & Perspectives**

PHBV degrades uniquely, unlike PLLA, PBS, and PBAT. Understanding structure-kinetics relationships guides stabilization and supports circular strategies for recyclable, food-contact biodegradable plastics.

- [1] N. Dahmani, K. Benhida, A. Belhadi, S. Kamble, S. Elfezazi, S. K. Jauhar J. Clean. Prod. 2021, 320, 128847.
- [2] I. Dedieu, S. Peyron, N. Gontard, C. Aouf *Polym. Test.* **2022**, 111, 107620.
- [3] M. A. Coniglio, C. Fioriglio, P. Laganà SpringerBriefs Mol. Sci. 2019, 1-66.
- [4] C. Matthews, F. Moran, A. K. Jaiswal *J. Clean. Prod.* **2021**, 283, 125263.

## Let's keep in touch?

Nathan Jourdainne, PhD Student nathan.jourdainne@univ-cotedazur.fr



## **Funding Acknowledgment**

All the authors acknowledge the financial support from the French National Research Agency with reference "ANR-23-CE43-0005" - ANR EC02R.