Exploiting The Base-Triggered Thiol/Vinyl-Ether Addition To Prepare Well-Defined Nanophase Separated Thermo-Switchable Adhesives

<u>Aritz Lamas¹</u>, Lucas Polo Fonseca¹, Iñigo Calvo², Haritz Sardon¹

¹POLYMAT, University of the Basque Country UPV/EHU, Joxe Mari Korta Center, Avda Tolosa 72, 20018 Donostia-San Sebastian, Spain.

²ORIBAY Group Automotive S.L. R&DDepartment, 20018 Donostia-San Sebastián, Spain

aritz.lamas@ehu.eus

Switchable pressure-sensitive adhesives can reversibly attach and detach from surfaces when triggered by stimuli. This study explores using sequential thiol-Michael and thiol-ene polymerizations as a simple method to improve these adhesives. It focuses on addressing side reactions and stability issues to create well-defined networks with improved adhesive performance.

More information

Figure 1. Scheme of the networks. DSC of

the 3 formulations. Kinetics measured by

photo FTIR of diacrylate and divinyl ether

Figure 2. AFM and TEM figures and SAXS

curve for thiol-Michael/-ene adhesive.

Comparison of a typical acrylic PSA with this

Figure 3. Dynamicity application for PSAs.

Pell test of the Thiol-Michael/-ene before

annhealing, without anhealing and with

heating. Peak Force of the 1st applicationd

with dithiol.

works PSA.

and 2nd application.

Acknowledgements

0.1mol% DBU

POLYNAT Basque Center for Macromolecular Design and Engineering Universidad del País Vasco Unibertsitatea Universidad Unibertsitatea Sardon LAB Sardon LAB WINISTERIO DE CIENCIA, INNOVACIÓN Y UNIVERSIDADES Financiado por la Unión Europea NextGenerationEU References References

Thiol-Michael/-ene

 25 ± 1

15 ± 2

 2 ± 2

25

20 -

10

 \widehat{z}

Before annealing

After annealing

200 °C

0.9

0.7

Peak force (N) Peel strenght (N/mm)

Distance (mm)

Conclusions

1st application

25

Ê 20 -

Peak force

5 -

• Orthogonality of the thiol with acrylates and vinyl ether has been explored.

2nd application

Peeling 200 °C

- Sequential Thiol-Michael/-ene polymerization provides a well defined network.
- Well defined nerwork provides better adhesive properties.
- Thiol-acrylate dynamicity enhances the adhesion properties.
- DSC curves shows the phase separation.
- AFM, TEM and SAXS results confirms the microphase separation.

[1] Liu, Z.; Yan, F. Switchable Adhesion: On-Demand Bonding and Debonding. Adv. Sci. 2022, 9 (12), 1–18 [2] Llorente, O.; Agirre, A.; Calvo, I.; Olaso, M.; Tomovska, R.; Sardon, H. Exploring the Advantages of Oxygen-Tolerant Thiol-Ene Polymerization over Conventional Acrylate Free Radical Photopolymerization Processes for Pressure-Sensitive Adhesives. Polym. J. 2021, 53 (11), 1195–1204. [3] Zhang, B.; Chakma, P.; Shulman, M. P.; Ke, J.; Digby, Z. A.; Konkolewicz, D. Probing the Mechanism of Thermally Driven Thiol-Michael Dynamic Covalent Chemistry. Org. Biomol. Chem. 2018, 16 (15), 2725–2734.