Fast and selective bisurea catalysts for ring opening polymerization: insights from DFT mechanistic studies

Rachele Zunino, 1,2 Jia Zhang 3, Niklas Warlin, Robert M. Waymouth and Giovanni Talarico 1,2

¹Scuola Superiore Meridionale, Largo San Marcellino 10, 80138 Naples, Italy. ²Department of Chemical Sciences, University of Naples Federico II, Via Cintia, I-80126 Naples, Italy. ³Department of Chemistry, Stanford University, Stanford, California 94305-5080, United States.

rachele.zunino@unina.it

Introduction

Organocatalyzed ring-opening polymerization (ROP) is a versatile technique for synthesizing biodegradable polymers^{1,2}.

We introduce bisurea (BU) anions as a novel class of organocatalysts that are fast, easily tunable, and exceptionally selective. BU catalysts facilitate the ROP of various monomers, achieving high conversions (>95%) in seconds to minutes, producing polymers with precise molecular weights and very low dispersities ($\theta \approx 1.01$)³.

To understand the origin of their exceptional performance, we investigated the ROP of ε-CL using Density Functional Theory calculations.

Catalytic species and RCs **BU-1:** $R = CF_3$, R' = H**BU-4 BU-2:** R = H, $R' = CF_3$ **BU-3:** R = H, R' = Fmeta-phenylene linker

x Ureas further away

x No full H-bond cooperativity

ortho-phenylene linker

- ✓ Tighter catalytic pocket
- ✓ Full H-bond cooperativity

Kinetic and Activation parameters

	catalyst	k_{p}	$\Delta\Delta G_{pr}^{\dagger}$	$k_{\rm p}/k_{\rm tr}$	$ \Delta\Delta G_{tr}^{\dagger} - \Delta\Delta G_{pr}^{\dagger} $
1	BU-1	290	19.5	5714	3.4
i	BU-2	252	19.9	3350	2.3
I	BU-3	580	18.6	3803	3.0
	BU-4	196	22.4	347	0.9

ortho-phenylene BUs display superior activity and selectivity!

Process selectivity is determined by the interplay between propagation and transesterification:

DFT reaction pathway

Structures of RDSs and NCI analysis

Conclusions

DFT calculations revealed that the remarkable activity and selectivity of BUs arise from the cooperativity of H-bonding sites, which is fully enabled only when an ortho-phenylene linker brings the urea groups into close proximity and electronic conjugation.

Moreover, the semi-rigid linker plays a key role in shaping a catalytic pocket that is both tight and flexible, efficiently promoting ε-CL ROP, while suppressing competitive transesterification thus ensuring high process selectivity.