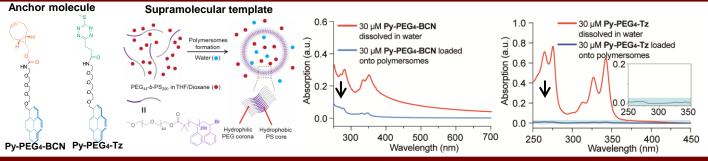
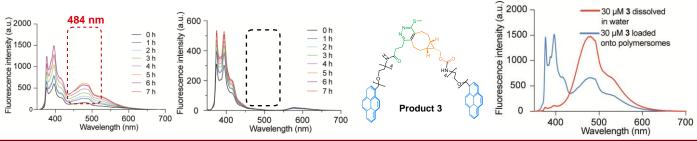


Dynamic Supramolecular Templates as Tunable Platforms for Proximity Driven Chemical Transformations

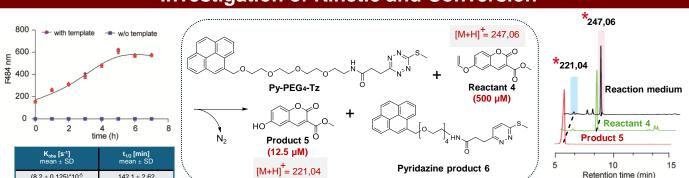
Qi Wang, Kevin Neumann*, Daniela A Wilson*


Systems Chemistry, Institute for Molecule and Materials (IMM), Radboud University, Nijmegen, The Netherlands E-mail: qi.wang@ru.nl

Introduction



Controlling chemical reactions in dilute conditions is difficult due to slow rates and side reactions. Inspired by nature, we use a supramolecular strategy to bring reactants close together on polymersomes using a pyrene-based anchor. This boosts iEDDA click reaction rates over 10,500-fold in water and enables real-time fluorescence tracking. Our modular platform offers a simple, efficient approach for proximity-driven chemistry in water and biological systems.


Loading of molecule 1 and 2 onto PEG corona

Conducting the reaction on Polymersomes

Investigation of Kinetic and Conversion

Conclusion

A universal pyrene-based supramolecular strategy boosts iEDDA reactions >10,000-fold on polymersomes, achieving 58% conversion under dilute conditions—offering a powerful platform for precision chemistry.

References

rences Acknowledgements

. Zhang, S, et al. Nat. Chem. 15, 240-247 (2023).

2.

- Stanton, B. Z, et al. Science 359, eaao5902 (2018).
- Wang, Q., Neumann, K., Wilson, D. Submitted.

