

Pickering emulsion templated porous nanocomposites: thermal behaviour of polymer at the interface

Meenal Agrawal¹ and Rajiv K. Srivastava^{1*}

¹Department of Textile and Fiber Engineering, Indian Institute of Technology Delhi, New Delhi-110016, India

Email: meenal.bhl@gmail.com

Objective

During the past many decades, porous polymers have been used for various applications like catalysis, absorption, drug delivery, tissue engineering, etc. For these applications, thermal behaviour of a material plays a crucial role affecting the material properties. However, the effect of porosity on the thermal properties of porous polymers has scantly been reported. Addressing this, porous polymer constructs of poly(\varepsilon-caprolactone) (PCL) were developed using Pickering emulsion templating and the thermal behaviour of resulting constructs was studied under non-isothermal conditions using various models namely Jeziorny, Ozawa, and Mo model. Further changes in the crystalline structure of polymer were also observed using x-ray diffractometer (XRD).

Fabrication of porous construct

Results

Scanning electron microscopy

Thermal characterization of PCL constructs

DSC thermograms recorded at 10 °C/min

Increasing $\phi_{d'}$ reducing interfacial thickness

Reducing chain mobility

Jeziorny model

$$X_t = 1 - e^{-k_t t^n}$$

 X_t is relative crystallinity at time t, k_t is rate constant, and n is Avrami exponent.

Double logarithmic form of equation: $ln[-ln(1-X_t)] = n \ ln(t) + ln(k_t)$

$$lnk_c = \frac{lnk_t}{\beta}$$

 β is cooling rate, i.e. 10 °C/min

Regime 2 Regime 3 Regime 1 Sample 2.17 0.87 0.993 5.05 1.02 2.36 0.85 0.996 3.58 0.91 0.96 2.13 0.76 0.996 4.25 0.79 0.999 3.36 0.76 0.995 4.10 0.59

Ozawa model

Double logarithmic form of equation:

Mo model

Double logarithmic form of equation:

XRD results

Ш														
i	Sample Id	Peak 1			Peak 2			Peak 3			Broad Peak			
		2θ (°)	<i>d</i> (nm)	D (nm)	2θ (°)	<i>d</i> (nm)	D (nm)	2θ (°)	d (nm)	D (nm)	2θ (°)	d (nm)	<i>D</i> (nm)	
]	PCL	21.5	0.4	23.2	22.1	0.4	23.2	23.8	0.4	18.0	-	-	-	
	cPCL	21.5	0.4	20.7	21.7	0.4	7.2	23.9	0.4	14.4	-	-	-	
	cPCL-Si	21.4	0.4	17.1	21.5	0.4	7.0	23.9	0.4	11.3	-	-	-	
	V75	21.5	0.4	12.7	-	-	-	24.1	0.4	12.8	12.9	0.7	1.7	
	V85	21.5	0.4	13.6	-	-	-	24.0	0.4	15.2	13.2	0.7	1.6	
			•	•							•			

Conclusions

- Pickering emulsion templating successfully led to the formation of porous constructs with different porosity by varying dispersed phase volume fraction.
- The resulting porous constructs demonstrated significantly diminished crystallization temperature and crystallinity percentage.
- Jeziorny model indicated a 3 regime crystallization along with 3D crystal growth stating the absence of confined crystallization.
- Significant deviation from linearity in Ozawa and Mo models concluded complex crystallization which couldn't be explained from currently used models.
- Absence of (111) crystal plane along with a new broad peak at 12.23° confirmed significant changes in crystal structure of porous constructs at higher porosity.

Monomer solution Non-porous Porous Porous Temperature (°C) Porous Pickering emulsion

References

- 1. Agrawal M., et al. (2024). Langmuir, 40(9), 4893-4903.
- 2. Agrawal M., et al. (2023). Int. J. Pharm., 633(2), 122611.
- 3. Agrawal M., et al. (2020). Chem. Comm., 56(83), 12604-12607.

Acknowledgement

- 1. Central Research Facility, IIT Delhi
- 2. Industrial Research and Development Unit, IIT Delhi