

Covalent adaptable networks for reprocessable composite materials

Valentino Fantozzi ^{1,2}, Vincent S.D. Voet ², Rudy Folkersma ², and Katja Loos ¹

¹ Macromolecular Chemistry and New Polymeric Materials, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 3, 9747 AG Groningen, The Netherlands

² Circular Plastics, Academy Tech & Design, NHL Stenden University of Applied Sciences, Van Schaikweg 94, 7811 KL **Emmen, The Netherlands**

Email: v.fantozzi@rug.nl

Vitrimers as composite matrices

Vitrimer composite key aspects

- Reprocessable matrix -> repairable composites by the action of heat and/or light
 - Extended lifetime
- Possibility to exploit bio-based components such as cardanol (1) and vanillin (2) based building blocks and biobased fibers like flax, kenaf, and sisal as reinforcing agents

Catalyst free vitrimer preparation

Conclusions and Outlook

4.5

f1 (ppm)

4.0

3.5

3.0

2.5

7.0

6.5

6.0

5.5

5.0

8.0

7.5

- Formulations with different cross linker / resin ratios

Composite manufacturing

Acknowledgements

1.5

1.0

- Authors acknowledge funding from
- NWO, AOC, Marlan

2.0

Paul Morandi is acknowledged for the help during the research

References

1. Schenk et al., Materials Advances 3, no. 22 8012-29 (2022). 2.Lan et al., Polym. Chem, 14 (44), 5014-5020 (2023). 3.Montarnal et al., Science 334, no. 6058 965-68 (2011). 4.Pettazzoni et al., Chemical Science 15, no. 7 2359-64 (2024).