A New Approach to Synthetic Spider Silk: Gradual Coagulation of Complex Coacervates via Microfluidic Fiber Spinning

Chantal Graafsma 1 , Hugo Brummer 1 and Marleen Kamperman 1

university of groningen

¹Polymer Science, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 3, 9747 AG Groningen, The Netherlands e-mail: c.n.graafsma@rug.nl

Introduction

Proposed mechanism of β -sheet formation of spider dragline silk. Image adapted from [2].

Spider silk is renowned for its exceptional mechanical properties. Characterized by high extensibilities and tensile strengths of up to 1.6 GPa^[1], it outperforms many man-made materials.

Spider silk proteins contain repetitive domains consisting of polyalanine-rich segments. The strength of spun fibers is in part attributed to the presence of these β -sheet forming regions. It is believed that gradual changes, such as in pH, shear or ionic strength, along the spider's spinning duct facilitate the α -helix to β -sheet transition of the protein. [2]

To study this natural processing system, we use a simplified spidroin-mimic by synthesizing polyelectrolytes poly(acrylic acid) (PAA) and alanine grafted poly(2-(dimethylamino)ethyl methacrylate) (PDMAEMA-Ala) and processing them to form a complex coacervate. Using microfluidics, we want to mimic the spinning duct by introducing gradients along the coagulation channel in which the liquid coacervate hardens into a fiber.

Polymer Synthesis

Polyanion Synthesis

RAFT polymerization of tBA & deprotection to PAA:

Complex Coacervation

Using PAA and varied mixtures of PDMAEMA homopolymer & PDMAEMA-PAla, the complex coacervation behavior of the polyelectrolyte pair was investigated. The effect of ionic strength, alanine content, and addition of chaotropic agent urea was investigated using rheology.

References & Acknowledgements

VIDI

VICI

- [1] Agnarsson, I et al. (2010). PLoS ONE 5, e11234
- [2] Oktaviani, NA et al. (2018). Nat. Commun. 9, 2121
- [3] Grazon, C et al. (2020). Angew. Chem. Int. Ed. 59, 622-626

Free radical copolymerization of DMAEMA + APMA & NCA ring-opening polymerization of polyalanine:

Polycation Synthesis

Fiber Formation

We use microfluidics to spin the liquid complex coacervate into a solid fiber. We are currently testing out various chip designs to spin complex coacervates made from commercially available polyelectrolytes poly(sodium 4-styrenesulfonate) (PSS) and poly(diallyldimethylammonium chloride) (PDADMAC) along a salt gradient.

Outlook

New Polymer Architectures: Synthesize and incorporate PDMAEMA/polyalanine block copolymers via aqueous ring-opening polymerization induced self-assembly (ROPISA).

Characterization: Use in-situ scanning-SAXS to image α -helix to β -sheet transitions. Study the mechanical properties of the obtained fibers with DMA and tensile testing.

Proposed method for preparing PDMAEMA/poly(alanine) block copolymers via aqueous ROPISA. Image adapted from [3].