Ambient Cationic Ring-Opening CHEMISTRY Homopolymerisation of a Thionolactone

to Produce Recyclable Materials Swarnali Neogi, Qamar-un-Nisa, Rohani Abu Bakar, Nathaniel M. Bingham, Peter J. Roth

Department of Chemistry, School of Chemistry and Chemical Engineering, University of Surrey, Guildford GU2 7XH, UK. contact: p.roth@surrey.ac.uk

Introduction clothing packaging Vinyl polymers

- The durability and versatility of vinyl polymers make them the most significant class of polymers.
- Their non-degradability limits their applications and imposes a global threat.

Solution: Degradable Polymers!

Purpose of this work

- Polymers with groups like esters, thioesters in their backbones are degradable.
- Thionolactone monomers can install thioesters in polymers by Ring-Opening Polymerisation (ROP).
- Some of the existing thionolactones. [1], [2]

- DOT copolymerises radically with vinyl monomers but does not homopolymerize well by the established radical method.[3]
- A homopolymer of DOT (pDOT) will have cleavable linkages in every repeat unit and should be fully degraded to into small molecules.
- present **cationic** ring-opening Here homopolymerisation (CROP) of DOT.

Cationic Ring-Opening Polymerisation (CROP)

Heterocyclic monomers can cationically polymerised ring-opening cationic polymerisation (CROP).

Polymerisation Experimentation

The homopolymerisation was rapid and proceeded with fading of the bright yellow colour of DOT.

- DOT was polymerised using a cationic initiator in a selection of solvents at room temperature. [4]
- The propagation was believed to take place via the formation of a **benzylic cation**.
- Different cationic initiators (BF₃·Et₂O, MeOTf, TfOH, SnCl₄) were found to successfully initiate the CROP of DOT.

¹H NMR spectrum of pDOT

Degradation Studies

- every repeat unit.
- The successfully polymers were degraded completely by both aminolysis (A) and thiolysis (B) at RT and also under thermal conditions (C) [5], [6] as found in SEC chromatogram.
- ¹H NMR spectra showing the formation of DTO **(B) DTO** g'

Pathway (B) (treatment of pDOT with excess thiolate) and pathway (C) (heating) cause the pDOT chains to 'unzip' and form DTO

- **TGA** profile of **MeOTf-initiated** pDOT was like that of **DTO**.
- For thermal degradation at **140°C**, **MeOTf-initiated** pDOT depolymerised to DTO much **faster** as compared to BF₃·Et₂Oinitiated pDOT.

References and Acknowledgement

- 1. Bingham, N. M.; Roth, P. J., Chem Commun 2019, 55 (1), 55-58.
- 2. Bingham, N. M.; Rezvani, Z.; Collins, K., Roth, P. J., Polym. Chem. 2022, 13, 2880-2901. 3. Spick, M.; Bingham, N. M.; Li, Y.; de Jesus, J.; Costa, C.; Bailey, M. J.; Roth, P. J., Macromolecules 2020, 53,
- 539-547.
- 4. Sanda, F.; Jirakanjana, D.; Hitomi, M.; Endo, T., *Polym. Sci. A* **2000,** *38* (22), 4057.
- 5. Kiel, G. R.; Lundberg, D. J.; Prince, E.; Husted, K. E. L.; Johnson, A. M.; Lensch, V.; Li, S.; Shieh, P.; Johnson, J. A., J Am Chem Soc 2022, 144 (28), 12979-12988.
- 6. Dai, J.; Xiong, W.; Du, MR.; Wu, G.; Cai, Z.; Zhu, JB., Sci China Chem 2023, 66: 251–258. The University of Surrey is acknowledged for funding.

Conclusion

- Homopolymer of DOT has been synthesized quite rapidly under ambient conditions.
- The polymers are fully degradable into small molecules by different degradation methods.
- The choice of initiator had an influence on the thermal stability.
- The formation of DTO from degradation of pDOT is a step forward towards the **recyclability** of the polymer.