Syringaldehyde Methacrylate as a Bio-Based Substitute for

Styrenic-Derivatives in Acrylate Copolymers
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Introduction

The transition toward sustainable materials has intensified research on bio-based monomers for polymer synthesis [1]. To this end,
syringaldehyde methacrylate (SyMA), a lignin-derived monomer, represents a promising alternative to styrene in acrylate copolymers, the latter
having applications in coatings, adhesives, and paints [2]. However, its polymerization behaviour and the properties of the resulting copolymers
require further investigation. In this study, SYMA was copolymerized with butyl acrylate (BuAc) using ARGET-ATRP, a controlled radical
polymerization technique [3]. Reaction conditions were optimized by evaluating different amino-ligands, such as PMDETA, Me6TREN and BiPy,
and initiators, e.g. EBiB, EBPA and TsCl. Kinetic studies were performed via TH-NMR and GPC to confirm the controlled nature of the process. The
resulting copolymers were characterized by 'H-NMR, GPC, DSC and TGA. Finally, mechanical properties of films with and without natural fillers,
such as chitin and chitosan, were investigated through tensile tests.

1. Synthesis of Syringaldehyde Methacrylate 2. ARGET-ATRP copolymerization of SyMA and BuAc
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3. Optimization of ARGET-ATRP copolymerization
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controlled and sustainable radical polymerization ARGET-ATRP. The
polymerization was successfully optimized by using Me6TREN as ligand, and EBiB
. . | as initiator at 90°C. Copolymerizations were carried out by varying the monomer-
‘ to-reducing agent ratio, achieving a 71% of conversion, and kinetic studies
performed via IH-NMR spectroscopy and GPC analysis confirmed the controlled
: nature of the process.
The copolymer composition significantly influenced the thermal properties, and
Study made b the glass transition temperature (T,) followed the Flory-Fox equation.
GPC analysis Interestingly, the copolymer containing 55 wt% of SyMA exhibited a T, of 64°C,
notably higher than the one observed for a comparable styrene-based copolymer
(34°C) [4]. Additionally, the thermal degradation temperature varied over a wide

range, from 290°C to 370°C, increasing with increasing the BuAc content.
The Mw/Mn ratio was < 1.3 for all the polymerizations. This finding, together with the Mechanical tests on films with a content of SyMA less than 20% revealed high
linear trend of kinetic and of molecular masses vs conversion, confirmed the controlled stretchability. The latter decreased in presence of fillers, especially chitin in

polymerization. After 8 hours, the conversion of both monomers stopped. comparison with chitosan. These findings suggest that SyMA-based copolymers

can be tailored with and without fillers, for applications requiring adjustable
6. Stress-Strain Measurements thermal and mechanical properties.
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The presence of a filler decreases the max strain value. Film with higher content of SyMA (19%)
show the highest elongation value (1000%) in absence of fillers
Tests made by Instron Machine
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