

Hochschule Bonn-Rhein-Sieg

University of Applied Sciences

Enhancing Lignin Functionality through Targeted Process Optimization

J. Bergrath^{1,2}, R. Burger¹, H.-W. Kling² and M. Schulze^{1,3}

Department of Natural Sciences, Bonn-Rhein-Sieg University of Applied Sciences, Rheinbach, Germany
 Department of Chemistry and Biology, University of Wuppertal, Germany
 Agricultural Faculty, University of Bonn, Germany

*Correspondence: margit.schulze@h-brs.de

MeO.

MeO.

ÓMe

OH

HO'

I. Background

Lignocellulosic feedstock

• 2022: The annual global production of lignocellulosic biomass in nature is estimated at 181.5 billion tons - of which only 8.2 billion tons of biomass are currently used. [1]

Organosolv

• In addition to maximizing delignification and/or lignin purity, varying the process parameters of the acidic ethanolic organosolv process can also affect lignin structure. [2]

Motivation

process

efforts.

 Lignins with high phenolic content could act as antioxidants, while lignins of low M_w are excellent precursors for the production of carbon fibers. [3]

Fig 1. Tomato stems, vine prunings, grape pomace, and reeds were used as biomass.

IV. Outlook

Broadening the study to other

catalysts, solid-liquid ratios) to

assess their effect on lignin

structure, and to combine these

findings with yield optimization

parameters

200 go 100 go 10

Fig 2. Parr 4570 autoclave used for

HO

HO'

HO'

OWe

Organosolv process.

II. Organosolv Process Design

- •The **aim of the experiments** was to determine how the pre-treatment and process parameters influence the structure of lignin, particularly its weight-average molecular weight (M_w) and total phenolic content (TPC).
- •The significance of the process parameters was investigated and correlated with potential condensation and depolymerization reactions.

Particle size 2.0 - < 0.25 mmTemperature range $150 - 240 \,^{\circ}\text{C}$ Process time range $60 - 120 \, \text{min}$ Ethanol concentration $50 - 96 \,^{\circ}\text{C}$

solid-liquid ratio 1:8

III. Lignin Analysis

The purity of the lignins (> 96 wt%) was determined using NREL (TP-510-42618). The lignin was analyzed by SEC (0.1 M NaOH) and UV/Vis (FC reagent) and additionally by HSQC-NMR (DMSO-d6) and FTIR.

Fig 3. Dependence of TPC and M_w on

lignins from two different biomasses

with different particle sizes. [4]

33.5 particle size ↓: TPC ↓

27.4 21.3 particle size ↓: Mw↑

8.40 particle size ↓: Mw↑

6.30 4.20 particle size ↓: Mw↑

Particle size [mm]

MeO

• Ethanol concentration had the strongest impact on lignin M_w ; lower levels significantly reduced it (see **Fig 5.**).

(e.g.,

- •Temperature showed a nonlinear effect, suggesting an optimal range for controlled depolymerization (minimum around 200°C).
- •Time had no significant impact on M....

Fig 4. HSQC NMR spectrum of a grape pomace (2.0-1.4 mm) lignin, showing the aliphatic side-chain and aromatic region. $\beta - 5'_{\beta}$ $\beta - 5'_{\alpha}$ $\beta - 5'_{\alpha}$ $\beta - 5'_{\alpha}$ $\beta - 0 - 4'_{\beta}$ $\beta - 0 - 4'_{\beta}$

7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0

temperature, and particle size significantly affect TPC and M_w.

These effects were consistently observed across different biomass types.

Ethanol conc.,

- Reducing particle size led to decreased TPC and increased M_w, indicating enhanced condensation during the Organosolv process.
- HSQC-NMR confirmed this by showing fewer β-O-4' linkages and more condensed structures.
- •This suggests that mechanochemical effects during size reduction may trigger condensation, leading to increased M_w and reduced TPC.

Acknowledgment

Funding by BMBF (13FH102PX8 & 13FH522KB2), BRSU Graduate Institute and TREE Institute. The authors gratefully acknowledge Hochschule Geisenheim University and University of Bonn for providing the biomasses.

[1] V. Ashokkumar et al., Bioresour. Technol. 2022, 344, 126195.
[2] J. Bergrath et al., Macromol Mater Eng. 2023, 2300093.
[3] H. Yu et al., ACS Sustainable Chem. Eng. 2023, 11, 4082.
[4] J. Bergrath et al., Macromol. Biosci. 2024, 24, 2400090.

