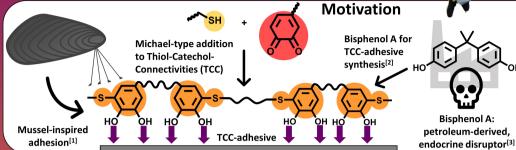
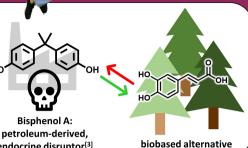
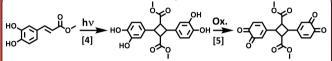
Caffeic Acid Based Adhesives: Thiol-Catechol

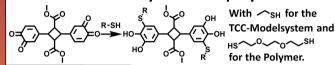

Chemistry meets Photochemistry

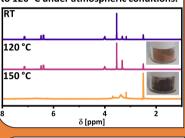

Carla Hansen, Keven Walter, Dominik P. Hoch, Hans G. Börner

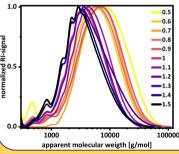
Laboratory for Organic Synthesis of Functional Systems Institute for Chemistry, Humboldt-Universität zu Berlin

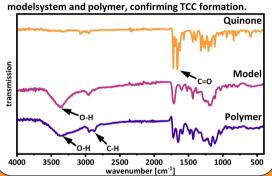


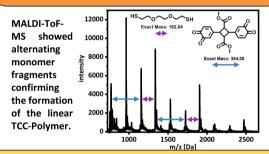
h.boerner@hu-berlin.de carla.hansen@hu-berlin.de



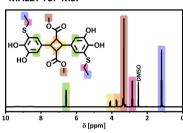

Quinone synthesis


TCC-Modelsystem and polymer

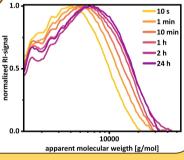

The quinone showed thermal stability up to 120 °C under atmospheric conditions.

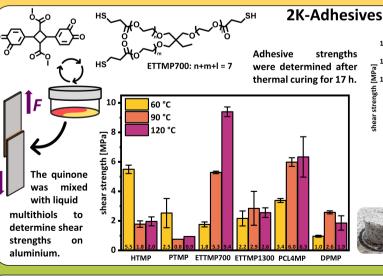


GPC showed formation of polymers with higher apparent molecular weight when an excess of quinone was applied.

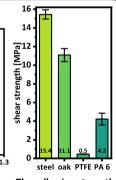


FTIR showed consumption of the conjugated C=O band of the quinone and formation of O-H vibrations in the modelsystem and polymer, confirming TCC formation





The sucessful TCC-formation was confirmed using 2D-NMR, FTIR and MALDI-ToF-MS.


GPC analysis showed completion of the polymerization after 1 h of reaction time.

14 PCL4MP 12 ETTMP700 18 8 2 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 equivalents of thiol per quinone

The adhesive strengths for the adhesive with ETTMP700 were investigated on different materials after curing at 120 °C.

Conclusion

The biobased caffeic acid was successfully converted into a bisquinone that was able to react via TCC-formation. The formation of polymers with dithiols was observed, showing further crosslinking with excess of quinone. With liquid multithiols the quinone was applied as 2K-adhesive, showing remarkable adhesive strength on aluminium, steel, wood and granite.

References:

- [1] B. P. Lee, P. B. Messersmith, J. N. Israelachvili, J. H. Waite, Annu. Rev. Mater. Res. 2011, 41, 99–132.
- [2] J. M. Krüger, H. G. Börner, *Angew. Chem. Int. Ed.* **2021**, *60*, 6408-6413.
- [3] S. A. Hafezi, W. M. Abdel-Rahman, Curr. Mol. Pharmacol. 2019, 12, 230–238.
- [4] Z. Wang, Q. Flores, H. Guo, R. Trevizo, X. Zhang, S. Wang, CrystEngComm 2020, 22, 7847-7857.
- [5] A. Pelter, S. Elgendy, Tetrahedron Lett. 1988, 29, 677-680.

Acknowledgements:

Steffen Weidner (BAM) for MALDI-ToF-MS measurements

Deutsche Forschungsgemeinschaft

project number: 536607484