Fluorinated Block Copolyesters via Switchable Ring-Opening Alternating Copolymerization: Reactivity and Self-Healing Insights O Chun-Yao Ke^{1,4} 'Mei-Nung Chen⁵ ' Yu-Xin Hsu⁵ 'Takuya Isono² 'Feng Li² 'Takuya Yamamoto² ' Guey-Sheng Liou⁴ 'Yu-Cheng Chiu⁵ 'Toshifumi Satoh^{2,3} ¹Graduate School of Chemical Sciences and Engineering, Hokkaido University, ²Faculty of Engineering, Hokkaido University, ³ICReDD List-PF, Hokkaido University, ⁴Institution of Polymer Science and Engineering, National Taiwan University, ⁴Institution of Polymer Science and Engineering, National Taiwan University, Ring-Opening Alternating Copolymerization (ROAC) of Epoxides with Cyclic Anhydrides **120** mins Healing **Ambient** No force No heat Fluorinated Anhydride (FPA) ■ Non-fluorinated Anhydride (PA) Segment-A entirely consumes → Then Segment-B starts. ### Self-Healable Block Copolymer # Healing Healed: Fracture occurs merged into at a new location a single piece **Under OM observation** #### No solvent **YEY TAKEAWAYS** Approach #### Design & Mechanism - Fluorine induces reactivity contrast in ROAC by modulating both monomers and chain ends. - Segment control is achieved in one pot via intrinsic kinetic selectivity. **Detachment** #### **Function & Application** Before healing: clear fracture line - Self-healing films recover at room temperature with no solvent or external force. - Additive blending promotes cohesive healing and soft-material potential. **National** Taiwan University 國立臺灣大學 **Polymer Chemistry** Manuscript in preparation...