Fluorinated Block Copolyesters via Switchable Ring-Opening Alternating Copolymerization: Reactivity and Self-Healing Insights

O Chun-Yao Ke^{1,4} 'Mei-Nung Chen⁵ ' Yu-Xin Hsu⁵ 'Takuya Isono² 'Feng Li² 'Takuya Yamamoto² ' Guey-Sheng Liou⁴ 'Yu-Cheng Chiu⁵ 'Toshifumi Satoh^{2,3}

¹Graduate School of Chemical Sciences and Engineering, Hokkaido University, ²Faculty of Engineering, Hokkaido University, ³ICReDD List-PF, Hokkaido University, ⁴Institution of Polymer Science and Engineering, National Taiwan University, ⁴Institution of Polymer Science and Engineering, National Taiwan University,

Ring-Opening Alternating Copolymerization (ROAC) of Epoxides with Cyclic Anhydrides

120 mins

Healing

Ambient

No force

No heat

Fluorinated Anhydride (FPA)
■ Non-fluorinated Anhydride (PA)

Segment-A entirely consumes → Then Segment-B starts.

Self-Healable Block Copolymer

Healing

Healed: Fracture occurs merged into at a new location a single piece

Under OM observation

No solvent **YEY TAKEAWAYS**

Approach

Design & Mechanism

- Fluorine induces reactivity contrast in ROAC by modulating both monomers and chain ends.
- Segment control is achieved in one pot via intrinsic kinetic selectivity.

Detachment

Function & Application

Before healing:

clear fracture line

- Self-healing films recover at room temperature with no solvent or external force.
- Additive blending promotes cohesive

healing and soft-material potential.

National Taiwan University 國立臺灣大學

Polymer Chemistry

Manuscript in preparation...