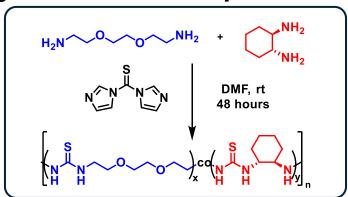
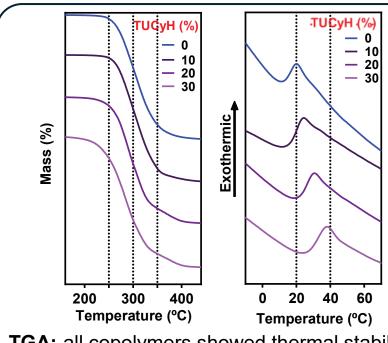

Chiral augmentation of self-repair in thiourea-based polymers

Francisco Rey,^{‡, a} Andrea Dalla Valle,^{‡, b} Roxanne E. Kieltyka,*, b Luis Sánchez*, a

- a: Departamento de Química Orgánica; Facultad de Ciencias Químicas; Universidad Complutense de Madrid; 28040-Madrid (Spain); E-mail: lusamar@ucm.es.
- b: Department of Supramolecular and Biomaterials Chemistry, Leiden Institute of Chemistry, 2300 RA, Leiden, The Netherlands. E-mail: r.e.kieltyka@chem.leidenuniv.nl;


Introduction

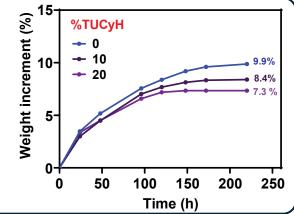
Incorporating hydrophobic domains into thiourea—ethylene glycol backbones enables robust, self-healing materials through flexible hydrogen bonding and domain formation. Unlike classical ureas, thioureas form more adaptable, zigzag H-bond arrays that support healing as demonstrated before by Aida et al ^{1,2}.


Here, we explore the effect of chirality on supramolecular organization by embedding enantioenriched 1,2-disubstituted cyclohexyl thioureas (TUCyH) into poly(TUEG₃). Copolymers with 10–30 mol % TUCyH were synthesized to probe hierarchical self-assembly and mechanical reinforcement.

Synthesis and compositions

Compound name	TUCyH %	Degree of polymerization
Poly(TUEG ₃)	0	58
Poly(TUEG ₃ ⁹⁰ -(1R,2R)TUCyH ¹⁰)	10	67
Poly(TUEG ₃ ⁸⁰ -(1R,2R)TUCyH ²⁰)	20	57
Poly(TUEG ₃ ⁷⁰ -(1R,2R)TUCyH ³⁰)	30	55

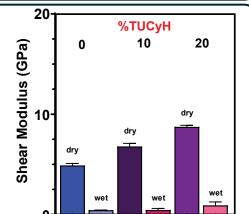
Thermal and Mechanical Properties



TGA: all copolymers showed thermal stability up to 250 °C.

DSC: Tg increases with a higher % **TUCyH**.

Exposure to high humidity:

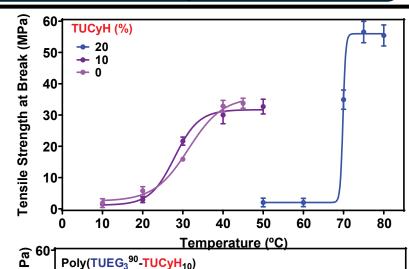

Water intake is lower for sample specimens with higher **TUCyH** content.

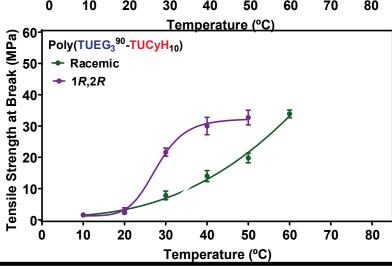
Shear moduli(G'):

G' increases linearly with % of **TUCyH**

G' decreases significantly for samples after water absorption.

Self-Healing study


Method: Two sample discs are melted and joined through a hole in a PTFE sheet, then pulled apart to fracture. After healing at various temperatures, they are re-broken to measure tensile strength at break.



Results: The healing curve of 10% **TUCyH** copolymer is nearly indistinguishable from pure **TUEG3**.

When 20% of **TUCyH** is incorporated the healing curve is shifted to higher temperatures and the healing ability of the material is increased.

The racemic mixture of 10% **TUCyH** shows different healing behavior with respect to the enantiopure material.

Conclusions

- Incorporation of TUCyH in TUEG3 polymers allows:
 - Improvement of thermal stability and increment of Tg
 - Increased storage moduli (G')
 - · Shifting of healing to higher temperatures
- The 10% TUCyH enantiopure copolymer healing is distinct from the racemic analog.

References:

- (1) Yanagisawa, Y. et. al, Mechanically robust, readily repairable polymers via tailored noncovalent crosslinking. *Science* **2018**, *359*,
- (2) Fujisawa, Y. et. al, Mechanically Robust, Self-Healable Polymers Usable under High Humidity: Humidity-Tolerant Noncovalent Cross-Linking Strategy. J. Am. Chem. Soc. **2021**, *143*, 15279–15285;

Fundings:

TED2021-130285B-I00 and NWO

