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 Ultrafine domain-spacing (d = 3.5〜6.0 nm)
 LAM, GYR structures (HEX is observed by in-situ SAXS measurement)
 Sufficient etching selectivity (Selective removal)
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 A facile synthesis method was established for hybrid materials composed of POSS and oligosaccharides.
 Through this method, spherical and cylindrical domains, which unobserved in conventional PDMS and oligosaccharide systems, were successfully formed.
 The alkyl-chain in the POSS segments was found to have a significant impact on the self-assembly behavior, enabling the construction of high interfacial

curvature morphologies.
 AB₂-type hybrid materials were readily formed various spherical packing structures, including FK phases and DDQC.
 Accordingly, molecular design guidelines were established for achieving diverse spherical morphologies in inorganic-sugar hybrid materials.

Figure 1. 1H NMR spectrum of Glc1–BPOSS in pyridine-d5 (600 MHz). 
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Figure 3. SAXS profiles of (a) Glc1–BPOSS, (b) Glc2–BPOSS, (c) Glc3–BPOSS,
and (d) Glc4–BPOSS. All samples were annealed at 200 °C for 4 h.

Figure 2. MALDI-TOF mass spectra of Glc1–BPOSS (red), Glc2–BPOSS (orange), Glc3–BPOSS (green), and Glc4–BPOSS (blue);
asterisks indicate peaks attributed to [M+K]+.
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Figure 4. MALDI-TOF mass spectra of Glc1–OPOSS (red) and Glc2–OPOSS (blue). Figure 5. SAXS profiles of Glc1–OPOSS (upper) and Glc2–OPOSS.

 These hybrid materials were successfully synthesized.

 These hybrid materials are monodisperse (they have a single MW)

 OPOSS-containing materials formed Frank-Kasper (FK) phase, A15 phase
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Figure 6. MALDI-TOF mass spectra of Glc1–(BPOSS)2 (red), Glc2–(BPOSS)2 (orange), Glc3–(BPOSS)2 (green), and Glc4–(BPOSS)2 (blue);
asterisks indicate peaks attributed to [M+K]+.

Figure 7. SAXS profiles of (a) Glc1–(BPOSS)2 annealed at 200 °C (upper), Glc2–(BPOSS)2 annealed at 160 °C (middle), and 200 °C for 4 h. (b) Glc3–(BPOSS)2 (upper)
and Glc4–(BPOSS)2 (lower). Both of them were quenched with liquid N2 after thermal annealing.
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Figure 8. MALDI-TOF mass spectra of Glc2–(OPOSS)2 (blue) and Glc3–(OPOSS)2 (red); asterisks indicate peaks attributed to [M+K]+. Figure 9. SAXS profiles of Glc2–(OPOSS)2 (left) and Glc3–(OPOSS)2 (right).

 Monodisperse hybrid materials were successfully synthesized.

 These hybrid materials formed A15 phase (FK phase), σ phase (FK phase), and dodecagonal quasicrystal (DDQC)


