

Synthesis of bacterial cellulose from mixed fruit waste for microplastic removal

<u>Dian Burhani</u>a, Ruby Setiawana, Puspita Lisdiyantia, Vincent S. D. Voetb, Rudy Folkersmab and Katja Loosa Loosa

^aMacromolecular Chemistry and New Polymeric Materials, Zernike Institute for Advanced Materials, University of Groningen, Netherlands ^bCircular Plastics, Academy Tech & Design, NHL Stenden University of Applied Sciences ^cResearch Center for Biosystematic and Evolution, National Research Innovation Agency, Indonesia

Introduction

Population growth contributes to increased microplastics (MPs) pollution and climate change due to higher levels of food waste

Solution

Use food waste to produce materials for microplastics removal

Goals

Develop sustainable and biodegradable nanocellulose-based materials to remove microplastics

Experimental methods

Sample collection

Bacterial cellulose (BC) synthesis Gluconacetobacter

Performance evaluation

Adsorption Bacterial cellulose

Microplastics used Cationic Latex $\lambda_{\rm ex}$ = ~520 nm; **bead fluorescent** $\lambda_{em} = ^540 \text{ nm}$ $\lambda_{\rm ex}$ = ~470 nm; **Anionic latex bead fluorescent** $\lambda_{em} = ^505 \text{ nm}$

Effect of time: 0h, 1 h, 2h, 3h, 4h, 5h, 6h

Effect of agitation: No agitation, and 150 **rpm**

Effect of ionic charge: Cationic MPs and **Anionic MPs**

Effect of pH: 4, 6.8, and 9

Results and Discussion

Conclusions

pH 9

The optimum time of adsorption was four hours.

The microplastic adsorption by BC was more effective in static conditions.

0

pH 4

Due to electrostatic interaction, BC adsorb more cationic MP than anionic MP.

pH 6.8

Highest adsorption capacity is observed in neutral condition.

0

Electrostatic interaction play more significant role in adsorption than pore filling.

time (h)

time (h)

Outlook

- Analyze the adsorption kinetics and adsorption isotherm.
- Analyze the effect of salinity on the adsorption.
- Perform the adsorption using Quartz Crystal Microbalance (QCM).

References

- D. Burhani, V. S. D. Voet, R. Folkersma, D. Maniar, and K. Loos, 2024. "Potential of Nanocellulose for Microplastic removal: Perspective and challenges," Tetrahedron Green Chem,
- Y. K. Leong and J. S. Chang, 2022. "Valorization of fruit wastes for circular bioeconomy," Bioresour. Technol