

4D – Printing of reversible stress-free semicrystalline shape-memory polymers

Natali Daniele¹, Balk M.², Gualandi C.⁴, Neffe A.³, Toma F.², Toselli M.¹

¹ Department of Industrial Chemistry "Toso Montanari". University of Bologna (Italy). ²Helmholtz-Zentrum Hereon, Institute of Functional Materials for Sustainability (Germany). ³Brandenburg University of Technology Cottbus-Senftenberg, Institute of Material Chemistry (Germany). ⁴Department of Chemistry "Giacomo Ciamician", University of Bologna (Italy).

Email: daniele.natali4@unibo.it

Reversible stress-free shape-memory polymers

M_n PBS block

4 K

Polybutylene succinate - PBS Poly-(ε-caprolactone) - PCL

Crosslinkable triblock PCL-PBS-PCL copolymers were synthesized varying molecular weights and films were produced by photo-polymerization.

The multicrystalline network can be programmed to change shape by reversibly melting and re-crystallizing the actuation phase (AP) through a mechanism of elongation and contraction known as CIE (crystallization-induced elongation) and MIC (melt-induced contraction)¹.

Shape-memory properties of copolymers mixture were evaluated under stress-free conditions, by monitoring the evolution of the strain upon heating-cooling cycles without any external load applied. The magnitude of the actuation represents the amount of elongation registered during the crystallization.

M_n PCL block

9K

Code

S₁

4D-Printing and shape-memory effects

Manufacturing of shape-memory polymers through 3D-printing ²⁻⁵.

Fused Particle Fabrication (FPF) extrusion-based 3D-printing technique.

Optimized Printing conditions		
Temperature 100 °C		
Pressure	3.5 bar	
Speed	4 mm/s	

Good adhesion

Filling orientation	Average E (MPa)	Average Actuation
Vertical 1 Layer	168.0 ± 5,2	8.0 %
Vertical 2 Layers	151.1 ± 7,8	8.0 %
Vertical 3 Layers	153.7 ± 6,3	7.5 %
Horizontal 1 Layer	163.2 ± 5,8	8.5 %
45° 1 Layer	163.3 ± 4,8	8.5 %

Cross-linked samples	Gel Content (%)	Actuation
FIlms	88=± 1	24.0 %
4D-Printed - Monolayer	82 ± 1	7.5 – 8.5 %

WAXD analysis of film and 4D-printed monolayer

Scan me to view the video

References: