

Whole spirulina cell-based biomaterials for extrusion 3D printing and more ...

Martin Cerff^a, Pia Swatkowski^a, Marvin Braun^a, Vincent Berthé^b

Introduction:

Fig. Closed loop habitats

Fig. Growing of spirulina

As space exploration advances, long-duration missions will rely on closedloop systems. In this context, materials directly produced from whole plants present the advantage to avoid complex extraction processes [1].

Spirulina (a cyanobacterium) presents a valuable resource, serving as both a food supplement and a potential source of oxygen. Additionally, its ability to grow rapidly in controlled environments and recycle human organic waste positions spirulina as a cornerstone of sustainable space habitats, as a material **building block** [2, 3, 4] and even a composite matrix.

Fig. Composition of spirulina → thermo-mecano plastic **matrix**

Fig. Composition of regolith powder → filler

- (1) Ann. Rev. Mater. Res. 2023, 53, 81 104.
- (2) J. Polym. Sc. 2021, 59, 2878 2894.
- (3) J. Appl. Polym. Sci. 2013, 130, 3263 3275.
- (4) Cells. Adv. Funct. Mat. 2023, 33, 2302067.

Objectives:

- 1) Compouding full-spirulina with regolith
- **3D print** them by Fused Filament Fabrication (FFF)
- 3) Sinter the composite to produce ceramic parts

Compounding:

Fig. Extrusion and production of filament

Pre-plasticization:

Dry-blending + 12 h resting

Melt processing conditions:

T: 120 °C

Screw speed: 100 rpm Residence time: 2 min Atmosphere : $N_2(g)$

Fig. Filaments (optical microscope)

3D printing:

Printing conditions: Control of the humidity of the compound Heater

Fig. microcomputed tomography

Ceramic part making:

Fig. Thermo-gravimetric analysis (TGA)

Sintering conditions: Temperature steps, controlled atmosphere, pressure...

Fig. Shaping, Debinding, Sintering (SDS) process

Ceramic parts:

- Thermo-mecano plastic matrix
- Compounding and 3D printing
- **SDS** process

