SYNTHESIS OF SEMI-RIGID-BIOBASED POLYESTERS FROM RENEWABLE FURANIC CYCLOBUTANE DIACID Luan Moreira Grilo^{1,2}, Sara Faoro^{1,3}, Beatriz Agostinho⁴, Andreia F. Sousa⁴, Nathanael Guigo⁵, Katja Loos¹, Dina Maniar¹, Talita Martins Lacerda² ¹Macromolecular Chemistry and New Polymeric Materials, Zernike Institute for Advanced Materials, University of Groningen, The Netherlands. ²Biotechnology Department, Lorena School of Engineering, University of São Paulo, Brazil. ³Center for Education and Research on Macromolecules, CESAM Research Unit, University of Liege, Belgium. ⁴CICECO-Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Portugal. ⁵Institut de Chimie de Nice, Université Côte d'Azur, France. ### Overview ## Results & Discussion | Polyester | Sample
code | Average yield (%) | $\overline{DP_n}$ | $\overline{M_n}$ (g*mol ⁻¹) | T _g (°C) | <i>T</i> _{d5%} (°C) | τ _{d10%}
(°C) | τ _{d50%}
(°C) | Char
(%) | |---|----------------|-------------------|-------------------|---|---------------------|------------------------------|---------------------------|---------------------------|-------------| | Poly(butylene cyclobutane-1,2-dicarboxylate) | РВСВ | 64.1 | 7 | 2 661 | 52 | 250 | 263 | 376 | 22.0 | | Poly(hexamethylene cyclobutane-1,2-dicarboxylate) | РНСВ | 43.1 | 10 | 3 960 | 18 | 261 | 277 | 362 | 21.8 | | Poly(octamethylene cyclobutane-1,2-dicarboxylate) | РОСВ | 66.3 | 28 | 11 225 | 10 | 263 | 278 | 379 | 18.6 | | Poly(decamethylene cyclobutane-1,2-dicarboxylate) | PDCB | 61.6 | 12 | 5 406 | 6 | 267 | 284 | 388 | 18.2 | ¹H NMR spectra of the polyesters' soluble fractions FTIR spectra of CBDA and its corresponding polyesters ¹³C CP/MAS NMR spectra of the polyesters **Polymers' DSC second heating curve** # Summary & Outlook - © CBDA was successfully polymerized with different diols: Achieving yields up to 66% and $\overline{M_n}$ up to 11 225 g/mol - 6 The synthesized polyesters displayed good thermal stability: $T_{d50\%}$ up to 388 °C and char-forming properties - **© Tunable thermal transitions:** T_a varying from 6 to 52 °C depending on diol length - © The polyesters low solubility is an inherent feature of the materials: 13C CP/MAS NMR did not indicate crosslinking #### Outlook ## **Q** Further studies on these materials are necessary To investigate their physical and mechanical properties, and To exploit their pendant furan groups for dynamic network formation ## References Gandini, A. & Lacerda, T. M. *Furan Polymers and their Reactions.*Wiley (2023). Thiyagarajan, S. et al. *Green Chem.* 16, 1957–1966 (2014). Wang, Z. D. et al. *ACS Sustain Chem Eng.* 6, 8136–8141 (2018). Wang, Z. et al. *ACS Sustain Chem Eng.* 8, 8909–8917 (2020). Acknowledgements advanced materials