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VITRIMERS BASED ON EPOXIDIZED CARDANOL RESIN
AND CYSTAMINE FOR 3D PRINTING APPLICATIONS
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With the aim of finding alternatives to fossil-based epoxies for 3D printing, a reprocessable bio-based vitrimer based on a bio Cystamine
epoxy resin (Cardolite™ Lite 514HP) and cystamine was investigated. Cystamine was chosen as cross-linker due to its dynamic di- o 2'\'\/\ SN
sulfide bonds, bio-based nature and the presence of highly reactive aliphatic amine groups, enabling rapid network formation. Mi- Des{a“”.at'on Otj i1 S NR;
crofibrillated cellulose (MFC) and ultrafine cellulose (UFC) were used as fillers and rheology modifiers to formulate printable pastes ﬁﬁi:gmﬁrréeﬁ Si ; c(:)ross-linker
via Liquid Deposition Modeling. The bio-based pastes were printed into various structures by two consecutive steps: printing of the P ] 07
paste at RT followed by cross-linking in oven. Finally, a preliminary Life Cycle Assessment was performed to evaluate the environ- Cardolite LITE 514HP ‘
mental impact of the chemicals used. | |
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relaxation time, B (0 < B < 1) = stretching exponent, <1> = characteristic average relaxation time

RHEOLOGY FOR 3D PRINTING

In(t — 10) = InK + nIn(shear rate)

REPROCESSING

Herschel-Bulkley model:
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CONCLUSIONS

Cystamine enabled curing of printed structures at T low enough to prevent deformation in the oven, yet high enough to avoid premature curing du-
ring printing. Rheological tests identified a concentration of 13 wt.% MFC and UFC as the optimal compromise between shear-flow behavior and
structural integrity. The vitrimer behavior of the formulations with and without cellulose was confirmed by stress-relaxation measurements and the
vitrimers also demonstrated successful mechanical recyclability (1.5 h, 160 °C, 3.5 metric tons). LCA suggested that the most effective mitigation
strategies would involve improving the synthetic route for cystamine-HCI and implementing closed-loop solvent recovery to minimize emissions.
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