

Solvent and Temperature Effects in the Photoiniferter RAFT Polymerisation of Poly(Ethylene Glycol) Methacrylate*

Roujia Chang, Bryn D. Monnery, Inge S. Zuhorn

*This work has been published in RSC Polymer Chemistry 2025

Targeted Drug Delivery with Nanomedicine Group, Department of Biomaterial and Biomedical Technology, University Medical Center Groningen; r.chang@umcg.nl.

Introduction

Poly(PEGMA) (PPEGMA) is a bottle-brush homopolymer and a potential biocompatible material. Compared to polyethylene glycol (PEG), its brush confirmation enhanced the stealth properties and non-immunogenicity. ^{1, 2} Yet, the highly reactive free radical of PEGMA makes control of its polymerisation challenging. Photoiniferter-RAFT polymerization is a promising approach to synthesise a broad range of polymers because of its highly 'living' nature. ³

We aimed to investigate a better synthetic method for PPEGMA, and investigated the effect of excitation wavelength, intensity, temperature, concentration, and solvents. The effect of solvents on photoiniferter-RAFT hasn't been previously reported.

Photoactivation

$$z = \sum_{s=1}^{s} P_{m}$$
 $z = \sum_{s=1}^{s} \sum_{s=1}^{s} P_{m}$

RAFT Equilibrium

Reversible termination

Scheme 1. General mechanism of photoiniferter-RAFT polymerisation.

Fig 2. Polymerization kinetics. λ_{max} = 470 and 515 nm, 1.6 mW/cm2 in DMSO, 50 %v/v, 22 °C.

Fig 3. Polymerization kinetics at 50, 23, 17, and 9 %v/v in DMSO. Initiated under λ_{max} = 470 nm, 1.6 mW/cm² in

Fig 4. Arrhenius plot for various solvents. $\lambda_{max} = 450$ nm, 18 mW cm⁻², 50 %v/v.

Fig 5. Eyring–Polanyi plot for various solvents. λ_{max} = 450 nm, 18 mW cm⁻², 50 %v/v.

Table 1. Arrhenius parameters, enthalpy of activation (ΔH^{\ddagger}), and entropy of activation (ΔS^{\dagger})

Solvent	E _a [kJ/mol]	A [L/(mol·s)]	ΔH [‡] [kJ/mol]	ΔS [‡] [J/(mol·K)]
1,4- Dioxane	31.95	4.33×10³	29.49	-183.54
Anisole	20.64	36.05	18.16	-223.44
THF	22.53	154.56	20.04	-211.36
EtOH	36.56	3.03×10 ⁴	34.07	-167.46
MeOH	24.73	397.86	22.25	-203.475
DMF	23.64	104.99	21.16	-214.55
DMSO	19.05	21.26	16.51	-228.02
	<u> </u>			<u> </u>

Fig. 6 Pre-exponential factor A fitted to an exponential regression model correlated to the extinction coefficients ε ($r^2 = 0.93$).

Fig. 7 The values of k_p at 25 °C ($r^2 = 0.71$) fitted to a linear regression model correlated to boiling points.

Conclusions

- The apparent k_p values were affected by equilibria and were sensitive to ambient temperature.
- Arrhenius parameters, ΔH[‡], and ΔS[‡] were fitted into Kalmet–Abraham–Taft and Catalan solvatochromic equations. However, no relationship was revealed by the regression analysis.
- The decreasing extinction coefficient of the CTA exponentially increases the effective collision factor A.
- The apparent k_0 values have a good relationship with the boiling point. Remodeling of the solvent cage contributes to the escape of propagating species.

References

[1] M. Li, S. Jiang, J. Simon, D. Paßlick, M.-L. Frey, M. Wagner, V. Mailänder, D. Crespy and K. Landfester , *Nano Lett.*, **2021**, 21 , 1591 —1598 [2] M. G. P. Saifer, L. D. Williams, M. A. Sobczyk, S. J. Michaels and M. R. Sherman, *Mol. Immunol.,* **2014**, 57, 236—246

[3] A.-C. Lehnen, J. A. M. Kurki and M. Hartlieb, *Polym. Chem.*, **2022**, 13, 1537-1546

Acknowledgment

This work is supported by NWO VICI (18683) awarded to Inge S. Zuhorn. We thank R. Hoogenboom (UGent) and J. Paulusse (UTwente) for SEC measurement.

Free radicals in solution