

Sustainable PLFs for home, beauty, and

personal care products

Neha Yadav, Christopher Fidge, Paul Price, Andrew Dove
School of Chemistry, University of Birmingham, Edgbaston, Birmingham, UK
email: n.Yadav.1@bham.ac.uk

Introduction

- ➤ PLFs key components in many consumer and industrial products.
- Estimated global PLF production: 29–36 million tonnes annually.
- Current PLF production is unsustainable, following a make-use-dispose model.
- The industry depends heavily on fossil-derived feedstocks.
- Need to replace non-degradable, fossil-based polymers with truly sustainable alternatives.
- A sustainable approach requires evaluating the origin of resources, biodegradability, biocompatibility, and formulation performance.

Aim & Objectives

Designing sustainable water-soluble PLFs to investigate their performance in home, beauty, and personal care products.

- ✓ Versatility and mild reaction conditions
- ✓ Good control molecular weight, dispersity, and end-group fidelity
- ✓ Post-functionalized modification
- Synthesis of water-soluble APCs
- > Study the thickening effect of APCs in personal care products

Designing the library of Aliphatic Polycarbonates

- ➤ Linear APCs- Varying degrees of polymerization (DP 20, 50, 100, 600) impact of molecular weight and polymer wt%, on thickening efficiency
- Branched APCs- Varying ratios of inimer and initiator: effect of degree of branching and molecular weight
- Crosslinked APCs- Crosslinker type, crosslinking density, and backbone chain length- effect on thickening in water-based formulations
- Star APCs- Molecular weight (via different DPs) and number of arms - influence the thickening performance of formulations

APCs in liquid formulations as viscosity adjusters

- ➤ High molecular higher thickening effect
- Water-based formulations
 Commercial polymer
 Entry 4
 Entry 5

 O.1 1 1 10 100 1000

 Shear rate (1/s)
- ➤ APCs with different level of branching
 different impart on thickening, some
 better than commercial polymers

- water-based formulation
 Commercial polymer
 APC DP 600

 1 100
 1 100 100 1000
 Shear rate (1/s)
 - ➤ DP 600 APC thickening close to commercial polymer

➤ star APCs - thickening comparable to commercial polymer at low shear, drop off at higher shear rates

Hydrolytic degradation of PLFs

- Undergo hydrolytic degradation
- Degrade faster in a basic environment

Conclusions & Future Outlook

- > A series of **novel water-soluble functional APCs** with a wide range of molecular weights and architectures.
- These APCs/PLFs showed a **potential thickening effect** in water-based formulations, and some were comparable to commercial PLFs.
- ➤ Gain a deeper understanding to control their performance and degradability.
- ➤ Use of synthesized APCs as additives in beauty and personal care products.

References:

- 1. Wiyanto, I.; Loh, X. J. RSC, London, 2016, 37–59. DOI: 10.1039/9781782623984 2. Picken, C.A.R.; Buensoz, O.; Price, P.D.; Fidge, C.; Points, L.; Shaver, M.P. Chem. Sci. 2023,14, 12926-12940. DOI: 10.1039/D3SC04488B
- 3. Kelly, C.L. Chem. Sci. 2023, 14, 6820-6825. DOI: 10.1039/D3SC90086J

Presentation - Wednesday, Jun 25, 2025, 10:15 AM - 12:00 PM Title: Designing water-soluble aliphatic polycarbonates for consumer product applications