A Platform to Upcycle and Recycle Various Grades of PE by C-H Activation

Lucile Cluzeau^{1,2}, Daniel Taton², Yannick Landais¹

1. ISM UMR-5255 - Université de Bordeaux – CNRS - Bâtiment A12, 351 cours de la libération 33405 Talence Cedex, France 2. 2. LCPO UMR-5629 – Université de Bordeaux - CNRS - Bordeaux INP,16 avenue Pey Berland, 33607 Pessac Cedex, France

lucile.cluzeau@u-bordeaux.fr

Side Chain

Ketoxime

INTRODUCTION

- Polyethylene (PE): **150 million tons** produced every year.¹
- Chemical recycling: hindered by the simplicity of its structure (inert C-C and C-H bonds).²
- This work: aims at incorporating polar functional groups into PE chains via selective, Metal-free C-H activation under mild conditions. 3
- This strategy: enabling high-value material production with improved properties and easier PE deconstruction: via incorporation of cleavable C-X bonds in the backbone.

Post-Polymerization Modification by C-H Activation-Upcycling

Parent (commercial) PE HDPE, LDPE, Waste

Side Chain Modification

OUR STRATEGY

The incorporation of ketoximes into PE through C-H activation offers a platform to modify PE properties.

Acidic proton (pka=20) Nucleophilic oxygen Nucleophilic nitrogen

> Not susceptible to hydrolysis

Electrophilic carbon

Versatile scaffold

2g, 99%

HDPE-CO, 98 %

2e, 97 %

PhNCO

Methodology:

Alkane models (C7,C24,C40)

Tailored low Mn polymethylene

Commercial PE (HDPE, LDPE, LLDPE)

Post-consumer PE (Waste)

p-CF₃Benzoyl-Cl

PFBenzoyl-CI

2c, 93 %

Linoleoyl-Cl

`PhF₅

2b, 97 %

VALORIZATION

Post-Functionalization:

2a, 99%

PEGCOCI

HDPE-NOH

e-CL

PHOTO-NITROSATION^{4,5}

Conditions:

nitrite

- Commercially available reagent Nitroso group transfer agent
- **Characterizations:**

¹H NMR $C_2D_2CI_4$ $C_2D_2CI_4$ 3.5 3.0 2.5 2.0 f1 (ppm)

Ketoxime's characteristic peaks visible after reaction

GPC

Mn and PDI of modified HDPE were nearly identical to those of unmodified HDPE

Applicable to various PE grades

Additive-tolerant reaction

NO. **Transient Persistent Tautomerization PE-NOH**

Optimization made on HDPE

Entry	PT	λ (nm)	Incorporation	Yield
	(mol%)		rate (mol%) ^a	(%) ^b
1	-	370	0.3	97
2	-	427	NR	98
3	1	370	0.6	98
4	1	427	0.6	99
5	0.2	370	0.5	Quant.
6	0.5	370	1.3	96
7	0.5	390	1.2	Quant
8	0.5	427	1.4	99

Thermal Properties

Crystallinity decreases linearly after reaction

HDPE

Surface properties

HDPE-NOH PE hydrophobicity decreases after modification

- ✓ Metal Free Selective C-H activation process
- ✓ Direct access to ketoxime and keto-PE and no side reaction
- ✓ Ketoxime reactivity can be used to tune properties

CONCLUSION AND PERSPECTIVES

- A photo-nitrosation reaction enables oxime grafting (\sim 1.4 mol%) onto PE, notably modifying its surface, mechanical and thermal properties.
- Oximes open post-functionalization routes and facilitate recycling by breaking bonds into reusable oxidized fragments.
- This method is chemoselective, metal-free, and applicable on a gram scale.

2d, 65 units grafted **Thermal Properties** Crystallinity (20 -10 -2d 2b 2c

- ✓ High added-value materials
- ✓ Improvement of Compatibility and Wettability
- ✓ Modification of thermal, surface and mechanical properties.

[2] Tang, Y. et al., Prog. Polym. Sci. 2023, 143, 101713.

[3] Alexanian, E. J.; Leibfarth, F. et al., Science 2022, 375, 545–550.

[1] Hartwig, J. F. et al., J. Am. Chem. Soc. 2023, 145, 21527–21537. [4] Landais, Y. Taton, D. Robert, F. Cluzeau, L. Patent FR2307794, 2025.

[5] Cluzeau L. et al., soon to be submitted, 2025.

