Study on Surface Coating Materials for Enhancing Adhesion in Electroless Plating

Byung Mun Jung
Composites & Convergence Materials Research Division, Korea Institute of Materials Science
E-mail:bmjung@kims.re.kr

Introduction

☐ GHz electromagnetic (EM) wave

- Increasingly applied in various application fields due to the saturation of lower frequency bands

☐ The problems of the devices

- Harmful electromagnetic radiation
- Malfunction of instruments by noise
- Deterioration of signal quality due to electromagnetic interference (EMI)

High perform

High performance EMI shielding materials based on fiber reinforcements

Metal plated fibers

- Low density
- High electrical conductivity
- High specific strength
- Excellent corrosion resistance
- Low thermal expansion rateGood workability

arbon fiber Metal layer Matrix resin

Sizing agent treatment Plasma etching Electrochemical oxidationano-carbon materials

Enhancement of interfacial adhesion between fiber and metal layer to strengthen composite materials

Experimental

> Materials

Edge-selectively oxidized graphene (EOG)

- Specificity of EOG
 - 1. Maintain sp² bonding
 - 2. High electrical conductivity
 - 3. Adsorption with Pd/Sn particles
 - 4. High specific surface
- 5. High dispersion

A.Edge selectively oxidized graphene coating

Morphology analysis

Crystal property analysis

B.Electroless Ni-P plating

Electromagnetic interference shielding

Interfacial adhesion evaluation

on effectiveness

> EOG coating process on carbon fiber

Condition	Notation
De-sized carbon fiber	D-CF
Electroless Nickel-plated on pristine carbon fiber	Ni-CF
Repeat EOG coating <i>n</i> times on carbon fiber	EOGn-CF
Electroless Nickel plated on EOG coated carbon fiber	Ni-EOG-CF

Results and Discussion

> Surface of carbon fibers after coating and plating

> XRD and XPS analysis of carbon fibers

SPECIMENS	O/C RATIO	Ni/C RATIO
D-CF	0.67	_
EOG5-CF	0.21	_
Ni-CF	0.72	0.001
Ni-EOG5-CF	1.12	0.090

> Microdroplet test of Ni-EOG5-CF with epoxy

Shear deformation occurs at the interface between the carbon fiber and the graphene coating layer

> Interfacial strength of plated metal

> EMI shielding performance

Summary

- The effect of surface treatment using edge selectively oxidized graphene to improve the interfacial adhesion strength between a CF and a nickel-plated layer of CF reinforced composite material with EMI shielding effect through electroless nickel plating was investigated.
- The interfacial adhesion strength of the specimen repeated 5 times with EOG coating was increased by 64.82 %.
- Since EOG coating and nickel-plating CF composite has EMI shielding performance of 58 dB in X-band region, it has significant potential as an EMI shielding material.

