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linked with zinc metal 1ons to form a thin film that self-heals within 12

Artificial self-healing materials enhance durability and longevity, drawing inspiration from mussel byssal threads. Here, a hexyl substituted vinyl functionalized 2,6-
bis(1,2,3-triazol-4-yl)pyridine (BTP) monomer was synthesized and copolymerized with alkyl acrylates via RAFT polymerization. The resulting polymer was cross-

metallopolymer also efficiently captures iodine, highlighting its potential for protective coatings, smart materials, and radioactive waste management.

hours below 100 °C, with tunable properties based on the metal salt used. The

 Inspired by the autonomous repair in mussel byssal threads (natural
phenomena), self-healing has been applied to metallopolymers for
advanced use in electronics, coatings, and biomedical fields.?

 Intrinsic self-healing systems;
covalent or noncovalent
metal-ligand interactions)
enables repeatable healing
under mild conditions but
requires more intricate design
than single use extrinsic
systems.?

rely on dynamic bonds (e.g. reversible

true strain (%)

d Metal-ligand coordination, with its tunable stability and reversibility,
provides a versatile platform for designing multifunctional self-healing
polymers.?

 Integrating these features into polymeric thin films for applications such
as lodine capture In nuclear waste management and environmental
protection is highly promising,® as the rational design of such
multifunctional systems remains largely unexplored.

» Strategically designing and synthesis of hexyl substituted vinyl functionalized
2,6-bis(1,2,3-triazol-4-yl) pyridine (HexVVBTP) monomer.
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| ilitv 4F Vinyl group functionalization
Implementation for SQ{Jblhty
o

» Functional group conversion
» Avoid C-C coupling using
metal catalyst

» Hexyl group helps for
solubilizing the
polymer

» Enables solvent annealrng
for improved application
processability.

Chelating site for metal ion complexation
» Exclusive binding with metal ions

» Electron rich triazole nitrogens: advantageous for
cooperative interaction with Lewis acid 1.e. iodine

* Random copolymerization with alkyl acrylates via reversible addition
fragmentation chain transfer (RAFT) polymerization to get a range of polymer.

¢ Crosslinking the polymers with targeted metal ion and systematic study of
thermally induced self-healing and iodine capture.

ner H

' : -kt - d ¢
2 Synthesis of HexVBTP Monom o oo
s Synthesis of Hex onomer T
—
N TN 0
e} 0 o ] |. Uiy '.' N ,[ b"N h |
HO._O ~ . 0 i . b
Functional group R R S TR

S CoHia=Ns  _ | \/ conversion | \/ . C |
. . O h | |
Ho NP op Cliekreaction gy \NTUNT N Gy, Nuclophilic e T N Y N-Ctig || dee ‘ l ol ]
=N = substitution N= N=N | Clal AU

(82%)

% Polymerization Strategy |
i -y

W b
b
\ i
| + O 71/© Initiator, heat N a4 o_i o
NN o 7( Solvent 7 ONT at sl b ooy
CeHiaN, N NC6H13 b CN S CeHraN /N05H13 a [ Tors
N= N=N -

R N:N N\N o] ‘ | d
N : N

HxXVBTP (71%)

H NI\/IR Spectra of HexVBTP (400MHz CDCI3)

HxVBTP Alkyl acrylates CTA P1-P3

R = Alkyl acrylates

» Conducted under optimized RAFT oy |
polymerization conditions to obtain | = & j
well-defined polymers

% Polymerization kinetics
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GPC chromatogram: In[1/(1—Xx)]vs. t|me plot: (X = Monomer conversion vs. time
collected at different time intervals monomer conversion) plot

Comprehensive analysis of polymer properties
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DSC analysis: higher flexibility
of LMA comprising polymer
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TGA curve: stable up to ~ 250 °C

+ Cross-linking of polymers J

Cross-linking of  the
btp-appended polymer
o using 1:2 metal 1on:btp
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TGA curve: stable up to ~ 200 °C  DSC analysis: PLMA has lower T,
than PBMA and broad endothermic

Self -healing lnvestlgatlon of metallopolymers’ thin-film

Poly Metallo  Metal salt Self-healing  Poly Metallo Metal salt Self-healing
';. mer  polymer (temperature mer polymer (temperature

2458 f / time) / time)

W A \‘f : P1 MP1 ZnCl, 2H,0 No-healing  P3 MP11 Zn(OTf), 70°C/12 h
N hgaling” -
: ‘ P2 MP2 ZnCl, 2H,0 120°C/18 h  P3 MP12 Zn(OAc),.2H,0  No-healing
k : P3 MP3 ZnCl, 2H,0 70°C/12h | P3 MP13 ZnS0,.7H,0 100°C/12 h
Partial lllcallng :

\*\ ' P2 MP4 Zn(OTf), No-healing  P3 MP14 FeCl,.4H,0 No-healing
n ¢ umpltu Iual@A P2 MP5 Zn(OAc),.2H,0 No-healing  P3 MP15 NiCl,.6H,0 No-healing
\- P2 MP6 ZnS0,.7H,0 120°C/20h  P3 MP16 CoCl,.6H,0 No-healing
P2 MP7 FeCl,.4H,0 No-healing  P3 MP17 Mn(OAc),.H,0 No-healing
P2 MP8 NiCl,.6H,0 No-healing P1 MP18 Zn(OTf), No-healing
N." healing P2  MP9 CoCl,.6H,0 No-healing P1  MP19 Zn(OACc),.2H,0  No-healing
P2 MP10 Mn(OAc),.H,0 No-healing P1 MP20 ZnSO,.7H,0 No-healing

The optical microscopy images; MP1 (a-C),  Self-healing results overview for metallopolymers: MP1-MP20
MP2 (d-f), MP3 (g-1), P3 (J-1) respectively > The best self-healing observed for MP3 thin-film

The probable mechanism for self-healing Mechanical property
4’ ~ Investigation
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> Weak and dynamlc coordination bond between Zn?* and triazole/
pyridine nitrogen combine with flexibility of LMA polymer backbone

lodine capture study

To enhance the practical utility of self-healing metallopolymers, the self-helable metallopolymers’ iodine adsorption
capability was investigated
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robust and versatile performance.

environmental cleanup, and smart materials.

[ Developed a dual-functional Zn(l1)-coordinated btp-based self-healable metallopolymers thin-film coating.
L Combines autonomous self-healing with efficient iodine capture in a single material and those two functions operate independently, ensuring

L We developed a thermally activated self-healing coating capable of toxic iodine capture. Promising for applications in protective films,

1 Depth mechanistic studies of the healing process and design tuning to expand the functionality of the self-healable polymers are underway.
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