

Switch to Bend:

The Advantage of SEC in Quantifying Photoisomerism of Uniform Oligomers

Qianyu Cai¹, Petko Stoychev¹, Zbigniew L. Pianowski¹, Michael A. R. Meier*^{1,2}

¹Institute of Organic Chemistry (IOC), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany

²Institute of Biological and Chemical Systems – Functional Molecular Systems (IBCS-FMS), KIT, Eggenstein-Leopoldshafen, Germany

☐ qianyu.cai@kit.edu

Motivation

Sequence-defined conjugated oligomers with rigid π-backbones offer precise structural control and detailed structure-property enable studies. Incorporating azobenzene switches allows reversible *E/Z* isomerization, but quantification by NMR spectroscopy is challenging in oligomeric systems due to signal overlap. SEC separates E/Z isomers based on hydrodynamic volume, with rigid full-conjugated backbones amplifying size differences for improved resolution.

OPE Oligomers

- iterative synthesis -> sequence-defined structures
- o-tetrafluoroazobenzene -> improved thermal stability
- rigid OPE → enhanced hydrodynamic sensitivity

NMR Analysis

- ✓ PS1 analyzable despite signal overlap
- X PS2&PS3 not analyzable

a straightforward

method but requires F

UV-Vis Spectroscopy

Conclusions & Outlook -

- first use of SEC for E/Z ratio quantification
- new means for analyzing macromolecular photoresponsive systems
- investigation in thermal stability of the photostates
- calculation of hydrodynamic volumes via molecular dynamic simulation

SEC Analysis

Table. Comparison of Z-isomer content (Z%) determined by different methods.

Entry	Z%		
	¹ H NMR	¹⁹ F NMR	SEC
PS1	71	73	73
PS2	*	78	79
PS3	*	81	83
* Not possible due to peak overlap.			