
Transparent Poly(ε-Caprolactone-co-δ-Valerolactone) 
Networks Towards Multi-Material Volumetric 3D Printing

Bart Bijleveld*, Fátima Trejo Arroyo*, Edward Vermeersch*, Antonio Jaén Ortega*, Bo Li±, Quinten Thijssen*, Sandra Van Vlierberghe* 

E: Bart.Bijleveld@ugent.be

 PBM UGent
 @PBMUGENT
 PBM UGent

Sequential Volumetric 3D printing of Amorphous Polyester Network (1) Followed by GelMA (2) 
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The demand for complex materials in the biomedical sector is increasing, often 
exceeding the capabilities of traditional 3D printing. Multi-material printing offers a 
solution by combining different materials with varying (sometimes opposing) 
properties. However current 3D printing techniques fails to incorporate these materials 
with high design flexibility due to the layer by layer printing approach.

Volumetric 3D printing has emerged as an innovative method that can create intricate 
structures in less than a minute, achieving resolutions down to to 20 μm.1,2 Unlike 
traditional techniques, it builds entire objects in one single step, allowing greater design 
flexibility and significantly reducing production time.

However, a key challenge in multi-material objects is ensuring the initial structure's light 
transparency. Crystalline microstructures can scatter light, resulting in resolution loss in 
subsequent print layers. For optimal results, the first material must have over 90% 
transparency at 405 nm.

Second Print: GelMA 

Synthesis of Amorphous Poly(ε-Caprolactone-co-δ-Valerolactone)
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A highly transparent three-arm polyester, synthesized from ε-CL 
and d-VL, achieved over 90% transmittance at 405 nm through the 
amorphous polyester pre-polymer. 

Following the polyester synthesis, multi-material printing was 
conducted using sequential VAM printing. After photo-induced 
polymerization, the polyester was extracted, washed, and placed 
inside a GelMA resin.

Initial findings indicate that crosslinking occurs in the scaffold’s 
pores. For more complex designs, precise alignment of the scaffold 
in the secondary resin is essential, and considerations regarding 
light diffusion and refraction are necessary to avoid artifact 
creation due to the high internal surface area affecting light dosage 
received.

Transparent sheet

VAM multi-material printing enables the integration of incompatible 
properties within a single structure, such as combining flexible and rigid 
elements. The technique meets the increasing complexity requirements of 
biomedical applications, especially in the replication of natural 
environments and cellular layered structures. By sequentially printing 
materials through an initial transparent framework, this approach 
facilitates a level of complexity that traditional 3D printing methods cannot 
achieve.
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• Extraction of delicate 
structure

• Post UV curing after 
extraction

• Transparency of 
structure decreased in 
GelMA resin

• Solution needs time to 
settle

Introduction

Transparent Poly(ε-Caprolactone-
co-δ-Valerolactone) Network
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Conclusion and Future Perspectives
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Function as long-term structural 
support scaffold
• Slow degradation (months-

years)
• Lacks cell-adhesive motifs
• Hydrophobic
• Minimal swelling
• Mechanically strong and elastic

Mimics soft tissue to ensure 
bioactivity
• Rapid enzymatic degradation 

(days to months)
• Bioactive

• Cell adhesion 
• Cell proliferation

• Hydrophilic
• Significant swelling in 

aqueous environments
• Soft but with tunable 

stiffness 

Co-Polyester

Biomedical Applications
Incorporation of varying materials
More complex design
Higher resolution 
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𝜺-CL:
𝜹-VL

Alkene 
contenttheor. 

(mmol/g)

Alkene 
contentexp. 

(mmol/g)

PCL:VL-8k-
3A

8000 7827 95.5 1:0.94 0.36 0.40

PCL:VL-8k-
3A

8000 7904 97.7 1:1.1 0.36 0.37

PCL:VL-8k-
3A

8000 8149 99.8 1:0.92 0.36 0.34

PCL:VL-8k-
4A

8000 8320 99.5 1:0.89 0.47 0.48
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