

Assessing Biobased and Recycled Polymers for a More Sustainable Toilet Flush System Design

Paula S. S. Lacerda ^{1,*}, Tatiana Zhiltsova ^{2,3}, Mónica S. A. Oliveira ^{2,3}, Andreia Costa ⁴, Andreia F. Sousa ¹

- ¹ CICECO—Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.
- ² TEMA Centre for Mechanical Technology and Automation, Department of Mechanical Engineering, University of Aveiro, 3810-193 Aveiro, Portugal.
- ³ LASI Intelligent Systems Associate Laboratory, Guimarães, Portugal.
- ⁴ OLI-Sistemas Sanitários, S.A. Travessa de Milão, Esgueira, 3800-314 Aveiro, Portugal.
- placerda@ua.pt

Challenge

Massive production of polymers,^[1] combined with their fossil-origin and low recycling rates, is causing severe environmental issues. Finding sustainable polymer solutions that can compete in properties and still being cost competitive is a major challenge to industry today.

OLIPush Project

"OLIpush - Redesign for greater circularity and a smaller environmental footprint" project focuses on finding more sustainable polymers to use in structural and functional components of a flush toilet system.

Task 1

Survey of commercially available bio-based polymers able to replace the fossil-based acrylonitrile-butadiene-styrene (ABS) in flush plates

- 1 Identification of key properties of the fossil-based ABS.
- 2 Comprehensive survey of commercial bio-based polymers to meet requirements.

Properties	Fossil-ABS	Bio-1	Bio-2
Injection molding	Yes	Yes	Yes
Physical properties			
Density	1.05 g/cm ³	1.05 g/cm ³	1.05 g/cm ³
Melt flow index	18 g/10 min ^(A)	18 g/10 min ^(A)	28 g /10 min ^(A)
Mold shrinkage	0.04 to 0.70%	0.04 to 0.70%	0.4 - 0.7%
Water resistance	0.2 - 0.45% ^(B)	0.2 - 0.45% ^(B)	0.3%
Mechanical properties			
Flexural modulus	2.2 MPa	2.2 MPa	2.4 MPa
Resistance to impact	19 KJ/m ²	19 KJ/m ²	16 KJ/m ²
Thermal properties			
Deflection temperature	83 oC (C)	83 oC (C)	95 °C (D)
Vicat softening temperature	104 °C ^(E)	104 °C (E)	95 °C (E)
(A) test conditions 220 °C / 10 kg; (B) Immersion 24h; (C) test conditions: Izod, 1.8 MPa, unannelated, 23 °C; (D) test conditions: charpy notched, 1.8 MPa, 23 °C; (E) test copnditions: 1 kg, 50 °C/h.			
		Chosen Bio-based polymers	

Acknowledgements

Study developed under Project "Agenda ILLIANCE" [C644919832-00000035|Project no 22], financed by PRR—Plano de Recuperação e Resiliência under Next Generation EU from the European Union; also under CICECO-Aveiro University, UIDB/50011/2020 (DOI 10.54499/UIDB/50011/2020), UIDP/50011/2020 (DOI 10.54499/UIDP/50011/2020), LA/P/0006/2020 (DOI 10.54499/LA/P/0006/2020), financed by national funds through FCT/MCTES (PIDDAC); and under the project/support UID/00481 – Centre for Mechanical Technology and Automation (TEMA). PSSL acknowledges "Agenda ILLIANCE" for research contract.

Task 2

Evaluation of end-of-life poly(propylene) (**PP**) and poly(oxymethylene) (**POM**), originally produced by OLI-Sistemas Sanitários S.A. company, to assess their potential for reintroduction into the production process.

Characterization

Figure 1 – Normalized FTIR of virgin and recycled PP and POM specimens

Figure 2 – TGA thermograms of virgin and recycled PP and POM. Inset: DTG of the corresponding polymers

Figure 3 – Water uptake by immersion of virgin and recycled PP and POM specimens

Results

- ✓ The FTIR spectra of virgin and recycled PP show negligible changes in polymer structure. In contrast, FTIR spectrum of recycled POM shows a more intense band at 1737 cm⁻¹, attributed to C=O function, which may indicate some degree of thermal- or photo-oxidation side reactions.
- ✓ TGA thermograms shows decreased thermal stability for recycled PP and increased for recycled POM, as compared to the virgin counterparts.
- ✓ Water uptake results shows that even after 70 days of immersion in water, both virgin and recycled PP and POM showed similar behaviour, respectively.

Bibliography

[1] Plastics Europe. Plastics the Fast Facts 2023; 2023. https://plasticseurope.org/knowledge-hub/plastics-the-fast-facts-2024/

