Mellitic Anhydride-Based Dynamic Polyester Networks 7 / e Tatsuhiro Kuwaba, Jeroen van Aart, Huiyi Zhang, Jaap den Doelder, Rint Sijbesma, Hans Heuts Email: t.kuwaba@tue.nl, j.p.a.heuts@tue.nl Eindhoven University of Technology, Department of Chemical Engineering and Chemistry ## Results and Discussion # Polyester network preparation Mellitic anhydride PB diol 160 °C, 50 RPM [OH]/[Anh] = 1:1PNTI diol - √ Scalable/simple process - ✓ Solvent-free condition - √ Thermoplastics → DCN - √ Various backbone choices (diol prepolymer) - ✓ Reactive extrusion as a cross-linking method | DCN | Used polyol | Gel fraction | | |----------|---|--------------|--| | PNTI-MA | PNTI diol ($M_n = 4,000 \text{ g/mol}$) | 1.0 | | | PB-MA | PB diol ($M_n = 2,100 \text{ g/mol}$) | 1.0 | | | PCL-MA | PCL diol ($M_n = 2,000 \text{ g/mol}$) | 0.93 | | | PCL-PMDA | PCL triol ($M_n = 2,000 \text{ g/mol}$) | 0.98 | | | | | | | Stress relaxation behavior # Influence of backbones/dynamic motif 140 °C **G(t)** [MP 200 °C **Higher T** 10^{-1} 10³ 10⁴ 10⁰ **10**⁻ Time [s] **VT-IR** spectrum of PCL-MA ### Secondary esterification ### Plausible structure of reduced dynamic motifs # Persistence of dynamic properties Extra cure (140 °C, 4 h) # Conclusions - Successful DCN preparation via reactive extrusion - MA is an effective dynamic cross linker - MA suffers more from side reactions than PMDA ### References DCN - 1. H. Zhang et al., ACS Macro Lett., 9, 272 (2020). - 2. M. Delahaye et al., J. Am. Chem. Soc., **141**, 15277 (2019). ### Acknowledgements We gratefully acknowledge financial support from NWO (Kuwaba and Zhang) and the EU's Horizon 2020 research & innovation program (polynSPIRE – van Aart). Total Cray Valley is gratefully acknowledged for providing Krasol HLBH-P 2000.