

Synthesis of Novel Vegetable Oil-based Polythiol Crosslinking Agents

Peter Conen^{1,2}, Clara Scheelje¹, Ramon Häusl¹, Michael A. R. Meier^{1,2}

- ¹Institute of Organic Chemistry (IOC), Karlsruhe Institute of Technology (KIT)
- ²Institute of Biological and Chemical Systems Functional Molecular Systems (IBCS-FMS), Karlsruhe Institute of Technology (KIT)

Synthetic Strategy TMDS, GaBr₃ 1. HSAc 2. PrOH, H⁺

Gallium bromide-catalyzed ester reduction

- Tetramethyldisiloxane (TMDS) as reducing agent → cheap industrial waste product
- Polysiloxane byproduct separated via alkaline hydrolysis
- Mild conditions, benign materials, scalable up to 50 g triglyceride, up to 75 % yield

Thiol synthesis via acetylthiolation and transesterification

- Quantitative acetylthiolation under ambient conditions without radical initiator
- Excess HSAc can be recovered and reused
- Acid-catalyzed transesterification of thioester with n-propanol
- Total thiol yield up to 95% across both steps

SH

Thiol-Ene Thermosets

Polythiol	Polyene	Gel ct. (THF)
HOSO	1,7-Octadiene	61 %
HOSO	GTU	98 %
GTU	1,7-Octadiene	> 99 %
GTU	GTU	> 99%

Curing under UV irradiation overnight

Thermoset Materials

- 1,7-Octadiene as comonomer
 - Gel content <99% for GTU-based polythiol
- Low gelation for HOSO-based polythiol
- GTU as trifunctional comonomer
- High gel content also for HOSObased polythiol
- Transparent, flexible materials
- $-45 \, ^{\circ}\text{C} < T_{q} < -11 \, ^{\circ}\text{C}$

Polythiol	Electrophile	Gel ct. (THF)
HOSO	1,8-ODITC	89 %
GTU	1,8-ODITC	< 99 %

1,8-octanediisothiocyanate (1,8-ODITC)

- 1,8-octainediisothiocyanate as comonomer
 - Accessible from amine in sustainable 2-step synthesis
- Base-catalyzed curing at 50 °C overnight
- Triethylamine as model catalyst
- High gel contents for both polythiols
- Transparent, flexible materials ■ 30 °C < T_q < -8 °C

uncured

Outlook

- Optimization of polymerization conditions
- Thermoset characterization: mechanical properties
- Monomer Scoping
- Other functional groups as co-monomers

Acknowledgements

- Karlsruhe House of Young Scientists (KHYS)
- Graduate Funding of the German States
- Mathilde Bourcier
- Dr. Jonas Wenzel (KIT Breher Group)
- Meier Group