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Investigation of GNP interactions with a TPP derivative

Aim
With the continued miniaturization of electronic devices, effective thermal 
management has become a critical challenge. The excessive heat
generated during device operation must be effectively dissipated from the 
sensitive components to ensure reliable performance [1].
In many applications, thermal management components are made of
polymer composites containing thermally conductive fillers. However, a
major limitation in such systems is weak filler-matrix interaction, which
leads to filler agglomeration and high interfacial thermal resistance [2].
In this work, we aim to tackle the problem by introducing an additive that
provides additional non-covalent interactions between the organic phase 
and the filler.

The concept

Why graphene nanoplatelets (GNP)?
• High thermal conductivity
• Lightweight
• Non-toxic

Why tetraphenylporphyrin (TPP)?
• Reported to adsorb on carbon nanomaterials
• Should provide spectroscopic evidence

of interactions with GNP
• Not used in composites with GNP yet

Why built into a polymer?
• To provide better connection with the matrix
• Under-researched approach

First attempts: reactions that did not occur in the intended way

Conclusions: challenges and possibilities

According to Xu et al. [3], the shift of Soret band can result from:
• solvent effect
• J-aggregation of porphyrin molecules
• diprotonation of the porphyrin ring nitrogens
• flattening of porphyrin molecules (related to adsorption)
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electron withdrawing effect reducing amine group reactivity
→ using a derivative with an aliphatic „linker”

steric hindrance
→ copolymer with a small monomer as a spacer

limited solubility in reaction and analysis media
→ picking other solvents
→ higher concentration of other substrates

deactivation of the catalyst
by forming a complex with the metal ion

→ using a stable TPP complex
→ using a catalyst with a large metal ion
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× Opening epoxy rings in PGMA
× Adding SnOct2 as a catalyst

× Radical polymerization
of a methacrylate derivative

× Copolymerization with MMA
× ATRP polymerization

× Opening epoxy rings in PGMA
× Opening epoxy rings in P(GMA-co-MMA)

× Radical polymerization
of a methacrylate derivative

× Copolymerization with MMA
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