Thermo-Responsive Vesicles Based on Diblock Copolymers with Upper Critical Solution Temperature Under Physiological Conditions

George N. Pappas^{1,2}, Pantelis Katharios³, Maria Vamvakaki^{1,2}

- ¹ Department of Materials Science and Engineering, University of Crete, 70013 Heraklion, Crete, Greece ² Institute of Electronic Structure and Laser, Foundation for Research and Technology – Hellas, 70013 Heraklion, Crete, Greece
- ³Institute of Marine Biology, Biotechnology & Aquaculture, Hellenic Centre for Marine Research, 71500 Heraklion, Crete, Greece

1. "Smart" Polymers for Controlled Release

Controlled release of

therapeutic cargo on "cue" according to specific cellular or extracellular stimuli triggered via chemical, biochemical, or physical means

Previous Studies

- X Only hydrophobic drugs
- Use of organic solvents for self-assembly

2. Objectives

> Encapsulation of hydrophilic active substances within thermo-responsive nanocarriers

Active Substance

> Temporally controlled delivery of active substances

Heating above T_c

3. Our Approach

First Block

- Hydrophilic polymer of choice: Poly(ethylene glycol) (PEG)
 - √ Biocompatible
 - ✓ FDA approved

Second Block

- Thermo-responsive copolymers of choice: Poly(acrylamide-co-acrylonitrile)
 - ✓ UCST behaviour in aqueous solutions
 - ✓ Tunable critical temperature by varying the acrylonitrile fraction

Ratio of the Two Blocks

➤ Amphiphilic block copolymer with a hydrophilic weight fraction of ~ 20%, for forming vesicles via self-assembly.

4. Synthesis

A. Synthesis of a hydrophilic segment as the macro-chain transfer agent

B. Synthesis of thermo-responsive diblock copolymers with UCST-type behavior by RAFT polymerization

$$I_{3}C$$
 \downarrow
 S
 \downarrow

→ ¹H NMR (500 MHz) spectrum of the PEG macro-chain transfer agent in CDCl₃.

Table 1: Macromolecular characteristics determined by SECEntryAN
(% in feed) M_n
(kg mol-1) M_w
(kg mol-1)P12523.329.91.28

P1 25 23.3 29.9 1.28 P2 26 22.7 29.1 1.28 P3 27 21.8 28.5 1.29

* DMF eluent, PMMA standards

5. Self-Assembly

❖ The T_{cp} of the diblock copolymers was tuned by the acrylonitrile mole fraction

Temperature (°C)

> TEM measurements of P2 aqueous solution at 19 °C

6. Encapsulation and Release

➤ Rhodamine B was encapsulated by simply cooling a preheated PBS solution containing a UCST-type diblock copolymer and the model dye.

DLC (%) =
$$\frac{(weight \ of \ RhB \ encapsulated)*100}{(weight \ of \ diblock \ copolymer)} = 0.2 \%$$

DLE (%) =
$$\frac{(weight\ of\ RhB\ encapsulated)*100}{(weight\ of\ RhB\ initially\ used)}$$
 = 9.5 %

Entry	<r<sub>H> (nm)</r<sub>	PDI
P2	184	0.10

7. Acknowledgments

The research project was supported by the Hellenic Foundation for Research and Innovation (H.F.R.I.) under the "2nd Call for H.F.R.I. Research Projects to support Faculty Members & Researchers" (Project Number: HFRI-FM17-3346).

