

Non-amphiphilic Polymers as Antimicrobial Materials

Tzu-Chien Wu^a, Alain M. Bapolisi^a, Anne Lehnen^{a, b}, Matthias Hartlieb^{a, b}

a - Institute of Chemistry, University of Potsdam, Karl-Liebknecht-Straße 24-25, 14476, Potsdam, Germany

b - Fraunhofer Institute for Applied Polymer Research (IAP), Geiselbergstraße 69, 14476, Potsdam, Germany

Contact: tzu-chien.wu@uni-potsdam.de

Non-amphiphilic polymers

 $HC_{10, RBC}$

Motivation

- Antimicrobial resistance is a critical global issue that leads to significant casualties and places a heavy burden on healthcare systems.
- Traditional antimicrobial polymers (APs), composed of cationic and hydrophobic units, are inherently toxic due to their amphiphilic nature.
- Non-amphiphilic APs are thus developed and studied as safer alternatives.
- Non-amphiphilic APs stay isolated in solution but cluster via hydrogen bonds upon contact with negatively charged bacterial membranes.
- This study aims to show that hydrophobicity is not essential for APs, highlighting non-amphiphilic polymers as a new design motif.

Polymer Synthesis and Characterization

- This platform combines AEAm as the cationic unit with selected hydrophilic monomers (AAm, TrisAAm, MAm, AH) at varying comonomer ratios.
- Xanthate-supported photo-iniferter (XPI)-RAFT polymerization is employed to produce copolymers to ensure controlled and efficient polymerization process.
- Followed by deprotection and purification, targeted copolymers are produced.
- SEC traces show that the obtained polymers have desirable dispersity, with no shoulders or bimodal distributions.

CC 50, HEK cells

Hemotoxicity & Biocompatibility Comonomer ratio O 60% **\$** 50% **△** 70% molysis (%) Hemotoxicity Hemotoxicity tests reveal that most polymers are non-toxic to blood cells, with only a subset of acrylohydrazide (AH) copolymers exhibiting toxicity ['] 16384 4096 Concentration (mg/mL) 8192 HEK293 cells **Cytotoxicity Test – CC50** Cytotoxicity on HEK cells is assessed using the resazurin assay. Increased cationic subunit content correlated with higher toxicity toward mammalian cells is observed.

#: >1024 μg/mL

Antibacterial Tests - MIC₅₀ value

- A subset of copolymers shows strong activity against *E*. coli and P. aeruginosa, except those containing AH.
- Polymer bioactivity is notably enhanced when the cationic charge and specific subunit ratio are balanced at 50:50.

MIC 50, bacteria		(SI)		MIC _{50, bacteri}	
Comonmer	Ratio (%)	TI		SI	
		EC	PA	EC	PA
AAm	80	>9	-	>85	_
	70	38	>8.5	>380	>20
	60	56	7	>512	>61
	50	5	2	>410	>107
TrisAAm	80	1	-	>10	-
	70	>8	-	>81	-
	60	14	1.36	>174	>17
	50	3	1	>190	>41
MAm	80	-	-	-	-
	70	18	-	>177	-
	60	31	>2	>310	>21
	50	59	5.5	>731	>61
АН	80	-	-	<6	<6
	70	-	-	<6	<6
	60	>2	-	8	<4
	50	2	>0.3	22	<4

Selectivity index

TI & SI Assessment

A subset of AAm and MAm copolymers shows a high TI and SI, indicating strong activity against E. coli and P. aeruginosa.

Proposed mechanism

Confocal image

TrisAAm

Confocal microscopy images of bacteria treated with dye-labeled copolymers show that the non-amphiphilic polymers accumulate on the bacterial cell envelope and induce significant aggregation⁴.

' AH

MAm

Non-amphiphilic APs

- Supramolecular multivalency & aggregation

Polymer Recruiting Mechanism

Non-amphiphilic polymers recruit each other via hydrogen bonding, leading to local enrichment on the bacterial membrane and enhancing disruption.

Conclusion and outlook

- A series of non-amphiphilic polymers was successfully synthesized, purified, and well-characterized.
- AAm and MAm copolymer series demonstrated significant selectivity against *E. coli*, acting as a promising material.
- Supported by prior research and current findings, this study confirms that hydrophobicity is not essential for effective AP design.

Reference

- 1. Pham, P.; Oliver, S.; Boyer, C., Design of Antimicrobial Polymers. *Macromolecular Chemistry and* Physics 2023, 224 (3), 2200226.
- 2. .Jain, A.; Duvvuri, L. S.; Farah, S.; Beyth, N.; Domb, A. J.; Khan, W., Antimicrobial Polymers. Advanced Healthcare Materials 2014, 3 (12), 1969-1985.
- 3. Ergene, C.; Yasuhara, K.; Palermo, E. F., Biomimetic antimicrobial polymers: recent advances in molecular design. Polymer Chemistry 2018, 9 (18), 2407-2427.
- 4. Bapolisi, A. M.; Lehnen, A.-C.; Wolff, M.; Kramer, J.; Kogikoski, S.; Steinbrecher, R.; Michler, N.; Kiesow, A.; Bald, I.; Obry, M.; Kersting, S.; Stensitzki, T.; Müller-Werkmeister, H. M.; Leiske, M. N.; Chiantia, S.; Hartlieb, M. Non-Amphiphilic Antimicrobial Polymers. Angewandte Chemie International Edition 2025, DOI: 10.1002/anie.202507564.

Acknowledgement

