Evaluation of Electrospinning-Based Photocatalytic Membrane Preparation Methods for Phenol Degradation Under Visible Light Z. Vilamová¹*, M.J. Sampaio^{2,3}*, L. Svoboda¹, J. Bednář¹, Z. Šimonová⁴, R. Dvorský⁴, C.G. Silva^{2,3}, J. L. Faria^{2,3} - ¹ CNT, CEET, VSB Technical University of Ostrava, Czech Republic - ² LSRE-LCM, Faculty of Engineering, University of Porto, Portugal - ³ ALiCE, Faculty of Engineering, University of Porto, Portugal - ⁴ CPIT, FMT, VSB Technical University of Ostrava, Czech Republic *zuzana.vilamova@vsb.cz, *mjsampaio@fe.up.pt #### MOTIVATION In recent times, fibrous membranes have developed a role in the **filtration of pollutants** from air or water. Unfortunately, if the filter membrane is used for several hours or days, it leads to a **gradually increasing concentration of pollutants** on the membrane surface. However, this contamination can be effectively **eliminated** by the presence of **photocatalytic submicroparticles** as a part of fibrous membranes. We prepared a set of polyvinyl difluoride (PVDF) **fibrous photocatalytic membranes** and compared their photocatalytic activities by **phenol degradation in a batch reactor**. Our results indicate the reusable properties up to 3 cycles. ### **EXPERMENTS AND RESULTS** ## INOTI-destructive evaluation | | LED diode | I | Methods | (mg·cm ⁻²) | | |-------------------------|-----------|----------|---|------------------------|--| | | TED diode | | PVDF_neat | 0 | | | luminscence | ls spec | /is spec | PVDF_blend | 1.7089 ± 0.0404 | | | chamber | | | PVDF_thermal | 0.0058 ± 0.0017 | | | \ l | | | PVDF_chemical | 0.3321 ± 0.0736 | | | photocatalytic membrane | . 2 | | LED diode 365 nm caused luminiscence at 438 nm The highest density area for blend, but encapsulated in fiber PVDF_chemical led to particle attachment on fibers | | | #### CONCLUSION In this work, PVDF membranes were successfully prepared and evaluated. Although, the most used so-called blend method is economical, it leads to **the particle encapsulation** in the polymer fiber which significantly **decreases the photocatalytic activity**, where $k_{app} = 0.00024 \text{ min}^{-1}$, and performs similar as the reference pure PVDF membrane with $k_{app} = 0.00019 \text{ min}^{-1}$. The **thermal method** is not a proper method either. It had a **lower density area of attached particles**. Due to the structure and chemical stability of PVDF, we successfully activated it by carbonate buffer and attached pre-prepared photocatalytic **g-C₃N₄ particles on its surface by covalent bond**. This led to a **high area density** of photocatalytic active regions and PVDF_chemical showed **the highest photocatalytic activity** with $k_{app} = 0.0018 \text{ min}^{-1}$. The significant **difference of photocatalytic kinetic** for PVDF_chemical membrane compared to PVDF_blend **is interesting** although concentration measurement of the photocatalytic particles showed huge difference for PVDF_blend DOI: j.polymer.2024.127238 **ACKNOWLEDGEMENTS**