

Amino-yne Click Reaction for Facile Polymer-Polymer Conjugation and Post-Polymerization Modification

Emre Akar*, Serter Luleburgaz, Ufuk Saim Gunay, Volkan Kumbaraci, Umit Tunca, Hakan Durmaz Department of Chemistry, Istanbul Technical University, 34469 Istanbul/Türkiye *akare20@itu.edu.tr

Summary

Electron-deficient alkynes, connected to electron-withdrawing groups like carbonyls, readily react with nucleophiles, particularly primary or secondary amines, in the amino-yne click reaction [1]. This catalyst-free, room-temperature reaction yields dynamic enamines efficiently, without requiring heat or prolonged times. While well-explored in polymer science, its use for polymer-polymer conjugation and modification of amine-functional commercial polymers is recent. This study pioneers the synthesis of block copolymers using the amino-yne click reaction, conjugating an alkyne end-functional methoxy poly(ethylene glycol) with amine end-functional polystyrene or poly(N-isopropylacrylamide) at room temperature, forming block copolymers. Additionally, hyperbranched poly(ethylene imine) and an aminoethylaminopropylmethylsiloxane-dimethylsiloxane copolymer were modified using electron-deficient alkynes in just two minutes [2]. This approach enables facile, greener, and energy-efficient polymer modification and block copolymer synthesis without metal catalysts or heat.

Figure 3: Syntheses of electron-deficient alkynes.

References

[1] Fu, X.; Qin, A.; Zhong Thang, B.; X-yne click polymerization. Aggregate, 2023, 4(5), e350. DOI: 10.1002/agt2.350.
[2] Akar, E.; Luleburgaz, S.; Saim Gunay, U.; Kumbaraci, V.; Tunca, U.; Durmaz, H.; Amino-yne reaction: An exquisite method for polymer-polymer conjugation and post-polymerization modification. European Polymer Journal, 2023, 199, 112470. DOI: 10.1016/j.eurpolymj.2023.112470.

Figure 4: General scheme for PEI modification *via* amino-yne click reaction.

Figure 5: 1H NMR spectra of PEI (A) and PEI-DMAD (B).

Table 1: Results of the PPM of branched PEI via amino-yne reaction using different

electron-deficient alkynes ^a						
Alkyne	Modified PEI	Eff. (%) ^b	Isolated yield (%) ^c			
DMAD	PEI-DMAD	≥99	95			
DEAD	PEI-DEAD	99	88			
DPAD	PEI-DPAD	≥99	85			
MP	PEI-MP	94	95			
EP	PEI-EP	77/83 ^d	84 ^d			
AP	PEI-AP	60/62 ^d /78 ^e	88 ^e			
PP	PEI-PP	86	72			
ETFB	PEI-ETFB	85	78			
All reactions were ca	rried out using: 1.2 equiv. of a	lkyne per free amine	of PEI in 1 mL CHCl ₃ at room			

^aAll reactions were carried out using: 1.2 equiv. of alkyne per free amine of PEI in 1 mL CHCl₃ at room temperature for 2 min unless stated otherwise. ^bDetermined by ¹H NMR. ^cDetermined gravimetrically. ^dReaction was carried out for 10 min. ^e2 equiv. of AP per amine was used.

DMAD DBAD DEAD	≥99 ≥99	34000 32000	1.58 1.59	76 74		
2.2.12		32000	1.59	74		
DEAD						
	≥99	33000	1.51	76		
DPAD	≥99	36000	1.60	73		
DAAD	≥99	35000	1.65	74		
^a All reactions were carried out using: 1.2 equiv of alkyne per amine groups of the copolymer in 1						

Conclusion

The amino-yne click reaction has been effectively applied to polymer-polymer conjugation and post-polymerization modification (PPM) of amine-functional commercial polymers, showcasing its versatility. For conjugation, amine-end-functional polystyrene (PS-NH₂) and poly(N-isopropylacrylamide) (PNIPAM-NH₂) were reacted with alkyne-end-functional poly(ethylene glycol) (PEG-alkyne), achieving high efficiencies, as verified by several spectroscopic and chromatographic techniques. In PPM, hyperbranched poly(ethylene imine) (PEI) and a polysiloxane-based polymer were modified with propiolate derivatives in just two minutes at room temperature. Difunctional propiolates showed near-quantitative modification, while monofunctional ones achieved good to high efficiencies. This catalyst-free, room-temperature method, enabled by accessible electron-deficient alkynes, offers a simple, greener, and energy-efficient alternative to traditional polymer modification strategies, imparting valuable functionalities for diverse applications across chemistry.