Ibuprofen-functionalized poly(β-amino ester)-based crosslinkers for controlled delivery from hydrogels

Yusuf Eren Kaymak, Kemal Ugur Oncel, Duygu Avci*

Department of Chemistry, Bogazici University, 3432 Bebek, Istanbul, Turkey

ABSTRACT

Ibuprofen (IBU), a popular non-steroidal anti-inflammatory drug (NSAID), has low solubility in water and low bioavailability, thus requiring frequent administration. However, long-term use of IBU may have some serious side effects like hepatitis and strokes, so it is desirable to design controlled release systems and/or more bioavailable forms for the drug. To control the IBU release and target certain tissues, a poly(β-amino ester) (PβAE) network is proposed. A PβAE crosslinker macromer (PEGAP) is synthesized and functionalized with IBU to yield PEGAP-IBU. This crosslinker is used to form co-polymeric hydrogels of PEGDA, and their release profiles and degradation mechanisms were investigated.

PEGAP-IBU-L:PEGDA

(50:50)

PEGAP-IBU-M:PEGDA

(50:50)

CHARACTERIZATION

PEGAP-IBU-H:PEGDA

(50:50)

PEGAP-IBU-L:PEGDA

(80:20)

RELEASE KINETICS

	PEGAP-IBU- <u>X</u> :PEGDA	Korsmeyer-Peppas		Peppas–Sahlin			
		n	R^2	k ₁	k ₂	m	R ²
	<u>L</u> ow	0.4249	0.9560	0.2484	0.1296	0.3383	0.9870
	<u>M</u> edium	0.4455	0.9274	0.3083	-0.0416	0.4848	0.9808
	<u>H</u> igh	0,4805	0,9775	0,3758	-0,0476	0,5964	0,9959

CONCLUSION

- ✓ PβAE systems with ibuprofen delivery property are successfully synthesized and their hydrogels prepared
- ✓ The systems release rate is controlled by the load of ibuprofen
- ✓The hydrogels show high degradability
- ✓ This material is a promising candidate for novel drug delivery systems

ACKNOWLEDGEMENT

This research was funded by Bogazici University. (BAP Project Number 20049)