Spontaneous Piezo- and Pyroelectricity of Polyacrylonitrile -**Brushes Prepared via Surface-initiated polymerization**

Fei Hu¹, Dae-sung Park^{2,3}, Javier Herrero Martin⁴, Dragan Damjanovic², and Harm-Anton Klok¹

¹ Institute of Materials, Laboratory of Polymers, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland ² Institute of Materials, Group of Ferroelectrics and Functional Oxide, EPFL, 1015 Lausanne, Switzerland

³ Department of Energy Conversion and Storage, Technical University of Denmark, Kongens Lyngby, Denmark ⁴ ALBA synchrotron, Carrer de la Llum 2-26, Cerdanyola del Vallès 08290, Spain

Polar Polymer Film

Electrostatic self-assembly

Polypeptides

Science. 1997, 276, 384 Angewandte Chemie, 2000, 112, 8 Nature 1999, 398, 137

Chem 2017. 3. 764 Polymers **2024**, 16, 2097 × Complex building blocks

- **×** Weak, non-covalent interactions
- × Stability
- **×** Difficult to control chemical composition

Polymer Brush

Side Group Alignment

Conformal coating

× Solution processing

× Melt-based processing

- High grafting density
- **Stretched polymer chain**

Chemical Reviews, 2009, 109, 5437-5527 Chemical Reviews, 2017, 117, 1105-1318.

Polymer brush is an effective way to modify surface properties.

Characterized by second harmonic generation

Langmuir, 2017, 33, 4157-4163

The orientation of dipolar liquid crystalline side chains in polymer brushes evolves progressively with brush thickness

Pyro- and Piezoelectric Measurement

Dynamic Pyroelectric Measurement

➤ The pyroelectric coefficient is comparable with commercial poled PVDF!

Piezoelectric Force Microscope (PFM)

Science, 2024, 383, 1492-1498

PFM showed that PAN in the brush architecture has much higher piezoelectricity than the spin-coated form, suggesting the structure promotes macroscopic polarization.

Model System

Polar Side Group

- Large dipole moment
- **Suitable for SIP**
- **Hydrophobic polymer**

*Calculated by

Preparation of Polyacrylonitrile Brush

Angew. Chem. Int. Ed., 2018, 57, 13433

Photo-induced metal-free surface-initiated polymerization

Synchrotron Radiation

➤ NEXAFS revealed the spatial anisotropy in the distribution of -CN groups.

Polymer Brush Thickness

Ellipsometry

Ellipsometry confirmed the film thickness around 10 nm

Atomic Force Microscope (AFM)

> AFM verified the uniformity of the thin PAN brush film and was consistent with Ellipsometry data.

Summary

Our study shows:

- > The polymer brush structure can reorient polar side groups.
- This further induces spontaneous macroscopic polarization.
- Pyro- and Piezoelectricity emerge without post-treatment.

Acknowledgements

We gratefully acknowledges the financial support from Swiss National Science Foundation and China Scholarship Council.

Swiss National Science Foundation