

university of groningen

faculty of science and engineering

healing and adhesion properties.

Physically Crosslinked Amphiphilic Eutectogels with Underwater Self-Healing, Strong Adhesion, and Closed-Loop Recyclability

Zeyu Zhang, Patrizio Raffa E-mail: p.raffa@rug.nl

Department of Chemical Engineering, University of Groningen, 9747 AG Groningen, The Netherlands

Introduction

- Eutectogels are emerging as soft material with great promise for application in soft electronics.
- Hydrophobic association, hydrogen bonding and electrotactic interaction

Strategy

The physically crosslinked conductive eutectogel.

Results

gel The outstanding mechanical possesses performance

Toughness of the eutectogel

Gel's network structure

High stretchability

• The eutectogels show excellent underwater self-

Eutectogel Adhesive Substrate

Liquid removing

Iron Plastic Wood Adhesive strength

Recyclability of eutectogel

Conclusions

2000

1200

- The abundant noncovalent interactions and copolymerization of hydrophobic and hydrophilic monomers endowed the gels with robust mechanical performance, underwater self-healing capability and strong adhesion.
- Due to the abundance of reversible non-covalent interactions within the gel network, the eutectogel could be recycled.

References

- 1. Acs Nano 2024, 18 (29), 18980-18991.
- 2. Adv. Mater. 2021, 33 (51), 2105306.